GCSE (9-1) Physics A (Gateway Science)
 J249/02 Paper 2 (Foundation Tier) Sample Question Paper

Date - Morning/Afternoon

Time allowed: 1 hour 45 minutes

You must have:

- the Data Sheet

You may use:

- a scientific or graphical calculator
- a ruler

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes above with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided.
- Additional paper may be used if required but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION

- The total mark for this paper is 90 .
- The marks for each question are shown in brackets [].
- Quality of extended responses will be assessed in questions marked with an asterisk (*).
- This document consists of $\mathbf{2 4}$ pages.

SECTION A

Answer all the questions.
You should spend a maximum of 30 minutes on this section.
1 Which of these electromagnetic waves has the highest frequency?
A microwaves
B gamma rays
C ultra-violet rays
D radio waves

Your answer \square

2 Which correctly describes electricity supply to homes in the UK?
A $\quad 50 \mathrm{~Hz}$ a.c.
B $\quad 50 \mathrm{~Hz}$ d.c.
C $\quad 230 \mathrm{~Hz}$ a.c.
D $\quad 230 \mathrm{~Hz}$ d.c.

Your answer \square

3 A student picks up a very hot plate.
What is the shortest time the student can react and drop the plate?
A 2 milliseconds
B 0.2 seconds
C 2 seconds
D 0.2 minutes

Your answer \square

4 A longitudinal wave passes through a slinky spring. The coils of the spring vibrate backwards and forwards.

The diagram shows the position of the coils at a point in time whilst the wave is passing through.

Which pair of coils are one wavelength apart?

A W and X
B \quad W and Z
C X and Y
D Y and Z

Your answer \square

5 Which of these is not true of all electromagnetic waves?

A They are transverse waves
B They have the same wavelength
C They can travel through a vacuum
D They travel at $300000000 \mathrm{~m} / \mathrm{s}$

Your answer \square

6 Which of these travels as a longitudinal wave?
A light from a torch
B ripples from a stone dropped in water
C sound from a loudspeaker
D ultra-violet from the Sun

Your answer \square

7 A ray of green light shines through a glass prism.

The ray travels through the prism and out of the other side.
Which diagram shows the correct path of the ray?

Your answer \square

8 The Sun was formed from a cloud of dust and gas.
Which force brought together the particles of the cloud?
A electrostatic
B frictional
C gravitational
D magnetic

Your answer \square

9 Which of these is evidence for an expanding universe?
A Light from galaxies is red shifted.
B Nuclear fusion occurs in stars.
C Many stars have orbiting planets.
D Stars were formed from dust and gas.

Your answer \square

10 What is the number of neutrons in this isotope of uranium?

238 92

A 92
B 119
C 146
D 238

Your answer \square

11 All radioactive sources have a half-life.
Which statement about the half-life of a source is correct?

A It is half the time for the radioactive source to become safe.
B It is half the time it takes for an atom to decay.
C It is half the time it takes the activity of the source to decrease to zero.
D It is the time it takes the activity of the source to decrease by half.

Your answer \square

12 Which wall would allow the most heat transfer through the wall?
A Thick wall made from a material with high thermal conductivity.
B Thick wall made from a material with low thermal conductivity.
C Thin wall made from a material with high thermal conductivity.
D Thin wall made from a material with low thermal conductivity.

Your answer \square

13 Why are high voltages used to transfer electrical power from power stations in the National Grid?

A allows low resistance wires to be used.
B produces a higher current.
C reduces energy losses.
D voltage can be changed using transformers.

Your answer \square

14 A radio transfers 30 J of potential energy to 27 J of useful energy.
What is the efficiency and energy loss for the radio?

	Efficiency	Energy loss
A	10%	3 J
B	10%	27 J
C	90%	3 J
D	90%	27 J

Your answer \square

15 A boy kicks a football.

The football has a mass of 400 g .
What is the potential energy of the football when it is 0.8 m above the ground?
Use the constant: gravitational field strength $(\mathrm{g})=10 \mathrm{~N} / \mathrm{kg}$.

A 0.032 J
B $\quad 3.2 \mathrm{~J}$

C 320 J
D 3200 J

Your answer \square

SECTION B

Answer all the questions.

16 Many power stations burn fuels to generate electricity.
Fuels can be renewable or non-renewable.
(a) Wood is used in some power stations.

Why is it called a renewable fuel?
\qquad
(b) Rachael has completed her homework on fuels used in power stations.

Look at her table below.

Fuel	Type
Wood	renewable
Plant and vegetable oils	renewable
Peat	non-renewable
Coal	renewable
North Sea gas	non-renewable
Uranium	renewable

She has made two mistakes, identify these in the table by putting a cross (\mathbf{x}) next to them.
(c) Power stations produce electrical energy and use the National Grid to send it to factories and homes in the UK.

A step-up transformer is used in the National Grid.
State what a step-up transformer does.
\qquad
\qquad
(d) Domestic UK electrical wiring uses live, neutral and earth wires.

Complete the two empty boxes and then draw lines to match up the wires to their colour and function.

Wire

Colour

Function

17 Matt experiments with radioactive materials.
He investigates how the activity of radiation changes with distance.
The radiation moves from the source to a detector.
He measures the counts per minute from a radioactive source.

The table shows the results from the experiment.

Distance between the source and the detector (cm) 10	Count rate (counts per minute)
20	1000
40	240
80	60

(a) Matt could not take an accurate reading at 0 cm .

Suggest a reason why.
\qquad
(b) (i) Two points for 10 cm and 40 cm have been plotted on the graph below.

Plot the rest of Matt's results and join the points with a smooth curve.

(ii) Use the graph to estimate the reading at $\mathbf{3 0} \mathbf{~ c m}$.
answer:
counts per minute
(c) (i) What pattern is shown by the results as the distance is increased from $\mathbf{2 0} \mathrm{cm}$ to 40 cm ?
\qquad
\qquad
(ii) Matt wants to find the count rate at 5 cm .

Estimate the count rate at a distance of 5 cm .
answer: \qquad counts per minute
(d) Matt thinks that his results show that keeping your distance from radioactive materials is a good thing.

Radioactive material	State	Distance from source	Irradiation risk	Contamination risk
A	solid	1 m	high	none
A	solid	4 m	low	none
B	gas	1 m	very high	high
B	gas	4 m	high	high

He writes down his conclusions about two radioactive sources in a table.
Describe the difference in the risks for irradiation and contamination for \mathbf{A} and \mathbf{B}.
\qquad
\qquad
\qquad
\qquad
\qquad

18 Rockets carry satellites into space.
(a) These satellites are kept in orbit around a planet by a force.

What is the name of this force?
\qquad
(b) Write down the name of the Earth's natural satellite.
\qquad
(c) A rocket carrying a vehicle called the Mars Rover was sent to Mars.

The Mars Rover has a mass of 185 kg .
The gravitational field strength (g) on Mars is $3.75 \mathrm{~N} / \mathrm{kg}$.
Calculate the weight of the Rover vehicle on Mars.
Show your working and give your answer to 3 significant figures.
State the unit for weight.
\qquad
\qquad
\qquad
\qquad
answer: unit.
(d) Why did the Mars Rover weigh more on Earth than on Mars?

19 Alex has two radiators in her home. They are filled with 10 kg of different liquids.

The table below shows information about oil and water.

Material	Specific heat capacity $\left(\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)$	Freezing point (C)	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$
Oil	1700	-24	250
Water	4200	0	100

(a) Alex's conservatory can be very cold.

Sometimes it can get as low as $-6^{\circ} \mathrm{C}$.
Alex thinks that the oil radiator may be better for the conservatory.
Suggest why.
\qquad
\qquad
(b) Both radiators have a 'cut-out' which prevents them getting hotter than $60^{\circ} \mathrm{C}$.

Suggest why.
\qquad
\qquad
(c) Alex does a calculation.

She knows that the oil heater produces 800 J of energy each second.
Calculate the energy produced by the oil heater in 10 minutes.
\qquad
\qquad
\qquad
(d) (i) Alex wants the oil heater to heat up by $40^{\circ} \mathrm{C}$. How much energy is needed? Show your working.
\qquad
\qquad
\qquad answer:J
(ii) She supplies enough energy to heat up the oil radiator by $40^{\circ} \mathrm{C}$ but it only heats up to $32^{\circ} \mathrm{C}$.

Suggest two reasons why.
\qquad
\qquad
\qquad

20 Kate investigates how well different balls bounce.
She drops different balls from the same height and measures the height the balls bounce.
She repeats the experiment 3 times for each ball.

100 cm drop
Her results are shown in the table.

Ball	Drop height (cm)	$\mathbf{1}^{\text {st }}$ reading bounce height (cm)	$\mathbf{2}^{\text {nd }}$ reading bounce height (cm)	$3^{\text {rd }}$ reading bounce height (cm)	Mean bounce height (cm)
Red	100	75	77	73	75
Blue	100	61	62	60	61
Green	100	60	31	58	
White	100	84	86	85	85
Yellow	100	26	24		26

(a) Calculate the mean bounce height for the green ball.
\qquad
answer: cm
(b) Kate forgot to write down one of the results for the yellow ball.

Suggest the value of the missing result for the yellow ball.
\qquad
answer: cm
(c) Evaluate the reliability of the results

Suggest how she could have improved her experiment.
\qquad
\qquad
\qquad
(d) (i) Kate suggests that 15% of the white ball's initial energy was not transferred usefully. Use calculations to show that this is correct and suggest where the energy was transferred to.
\qquad
\qquad
\qquad
(ii) How could the efficiency of the ball be improved?
\qquad
(e) Explain how energy is transferred and lost from the ball when it bounces.
\qquad
\qquad
\qquad

The table below shows the stopping distances for a car.

Speed of car (m/s)	Thinking distance (m)	Braking distance (\mathbf{m})	Total stopping distance (\mathbf{m})
8	6	6	12
16	12	24	
32		96	120

(a)* Analyse the data in the table and use it to describe the trends shown.

Suggest reasons for the differences in the patterns in the data.
\qquad
(b) The car takes 6 m to brake when moving at $8 \mathrm{~m} / \mathrm{s}$.

Look at the graph of a car travelling at $8 \mathrm{~m} / \mathrm{s}$, starting to brake and then stopping.

time (s)
(i) Calculate the acceleration of the car during braking.

Show your working and state the unit.
\qquad
\qquad
\qquad
\qquad
answer: unit
(ii) The car has a braking force of 5000 N .

Calculate the work done by the brakes on the car.
\qquad
\qquad
\qquad
answer: J
(c) If a driver is tired how will this affect the braking distance?

Explain your answer.
\qquad
\qquad
(a) A crowd makes a Mexican wave.

A Mexican wave starts with people lifting and lowering their arms.

The Mexican wave continues by people, next to them, lifting and lowering their arms.
Why is a Mexican wave an example of a transverse wave?
\qquad
\qquad
(b) In the classroom a teacher demonstrates waves using a rope.

Look at the diagram of the wave.

(i) The frequency of the wave is 2 Hz .

What does this statement mean?
\qquad
(ii) How many seconds will it take this wave to travel 12 m ?

Show your working.
\qquad
\qquad
\qquad
answer: \qquad seconds
(c) Ultrasound scans are used to produce images of tissues inside the body.

Ultrasound waves are emitted.
They reflect from layers of tissue inside the body.
Explain how the reflections are used to produce an image of the tissues.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Ultrasound and X rays are used to scan patients in hospitals.

Complete the table to show a medical use, benefits and risk of using these waves to scan patients.

Wave	Medical use	Example of a benefit	Risk
X-rays	Shows up hard tissues inside the body.	Takes images of broken bones.	Damages living cells by causing \qquad
ultrasound			None

23 A car on a roller coaster is stationary at the top of a slope.
It has a weight of 6500 N and a potential energy of 217000 J .
(a) Calculate how high above the ground it is.
\qquad
\qquad
\qquad
\qquad
(b)

The energy at the bottom of the slope is lower than expected.
Suggest two ways to improve the efficiency of the roller coaster car.
\qquad
\qquad
\qquad

Copyright Information:

© sofist. Image supplied by iStock, www.istockphoto.com
© SergeyDV. Image supplied by Shutterstock, www.shutterstock.com

OCR is committed to seeking permission to reproduce all third-party content that it uses in the assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

