GCSE (9-1)

Physics B (Twenty First Century Science)

J259/04: Depth in physics (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
\mathbf{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret. AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

Question			Answer	Marks	AO	Guidance
1	(a)	(i)	Anticlockwise arrow	1	2.1	ALLOW word anticlockwise
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 12 (per minute) award 2 marks $\begin{aligned} & 40 / 20=2 \quad \checkmark \\ & 6 \times 2=12 \text { (per minute) } \end{aligned}$	2	2.2×2	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 6.4 (N m) award 3 marks Recall and apply: moment of a force $=$ force \times distance $($ moment $=) 32 \times 0.20$ $($ moment $=) 6.4(\mathrm{~N} \mathrm{~m})$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	

	Question	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
2*		Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Correct density of both liquids determined AND Qualitative comparison of graphs of which at least one idea is interpretation and one is evaluation There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) A valid attempt made to determine density of both liquids AND Some comparison of graphs at least one idea of which must be an interpretation or an evaluation There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) A valid attempt made to determine density of one liquid OR Limited comparisons of graphs and densities There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} 1.1 \\ 2.1 \times 2 \\ 3.1 \mathrm{a} \times 2 \\ 3.1 \mathrm{~b} \end{gathered}$	AO3.1a Interpreting information from the graph For example: - Straight-line graphs - Linear relationship between mass and volume - Graph does not go through origin because of the mass of the beaker - Gradient of line for \mathbf{E} is greater - Gradient is density - Intercept is mass of beaker AO3.1b Evaluation of information from the graph For example: - Mass of cylinder $=60 \mathrm{~g}$ (allow $\pm 5 \mathrm{~g}$) - Density of \mathbf{E} is greater than that of F A01.1 - Demonstration of ideas about density For example: - Correct use of density equation for any point taken from the graph AO2.1 Apply knowledge and understanding of scientific ideas - Line(s) extended to determine y-intercept - Density of E is about $1.4\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ or $1400 \mathrm{~kg} / \mathrm{m}^{3}$ - Density of \mathbf{F} is about $1.0\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ or $1000 \mathrm{~kg} / \mathrm{m}^{3}$

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
3	(a)		More sheets means less light / intensity (for LDR) ORA \checkmark Resistance of LDR increases with less light / intensity ORA	2	$\begin{aligned} & 3.2 \mathrm{a} \\ & 3.2 \mathrm{~b} \end{aligned}$	ALLOW more light (intensity) less resistance ALLOW more resistance with more sheets 1 mark max
	(b)		Ammeter connected in series Voltmeter connected across the cell / LDR	2	1.2×2	Candidates must have correct symbols for each device and complete circuit IGNORE other extra symbols / minor gaps DO NOT ALLOW continuous line through ammeter or voltmeter IGNORE continuous line through second meter in a correct circuit
	(c)	(i)	Any one from: Use the same light source Keep the distance between the LDR and light source the same \checkmark Keep the same background light	1	3.3a	ALLOW any suggestions that keep the ambient light the same
		(ii)	Any one from: Work in a darkroom Keep the same background light Put a box around the LDR (and light source) Use the same light source Keep the distance between the LDR and light source the same	1	3.3b	ALLOW any suggestions that keep the ambient light the same

Question			Answer	Marks	AO element	Guidance
4	(a)	(i)	Pressure (inside the syringe/marshmallow) decreases Volume of trapped air increases / air inside marshmallow \checkmark	2	2.1×2	
		(ii)	Measure the (length of) marshmallow and measure the volume of air in the syringe AW Take several readings A graph of length against volume should be a straight-line graph through the origin AW / length \div volume $=$ constant AW \checkmark	3	$3.3 \mathrm{a} \times 2$ 2.1	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{8}\left(\mathrm{mm}^{3}\right)$ or $\mathbf{8 . 0}\left(\mathrm{mm}^{3}\right)$ award $\mathbf{3}$ marks Recall and apply: pressure \times volume $=$ constant $100000 \times 8.8=110000 \times$ volume (volume $=) 8\left(\mathrm{~mm}^{3}\right)$ or $8.0\left(\mathrm{~mm}^{3}\right)$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW correct answer written in table ALLOW $P_{1} \times V_{1}=P_{2} \times V_{2}$ ALLOW $\mathrm{P}_{1} / \mathrm{P}_{2}=0.91$ or $\mathrm{P}_{2} / \mathrm{P}_{1}=1.1$ for 1 mark

Quest	Answer	Marks	AO element	Guidance
5 (a)	Speed increases Frequency does not change Wavelength increases	3	1.1×3	
(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.022$ (m) award 4 marks Recall and rearrange to give: distance $=$ speed \times time $\begin{aligned} & =1100 \times 4.0 \times 10^{-5} \\ & =0.044(\mathrm{~m}) \\ & \text { length of eyeball }=0.044 \div 2=0.022(\mathrm{~m}) \end{aligned}$	4	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	Alternative method: $\begin{aligned} & 4.0 \times 10^{-5} / 2=2.0 \times 10^{-5} \\ & \text { Distance }=1100 \times 2.0 \times 10^{-5} \\ & =0.022(\mathrm{~m}) \end{aligned}$
(c)	The (smaller) pulses at due to reflections at the (eye) lens	2	$\begin{aligned} & 3.2 \mathrm{a} \\ & 3.2 \mathrm{~b} \end{aligned}$	ALLOW cornea

Question			Answer	Marks	AO element	Guidance
7	(a)	(i)	Out of plane of paper \checkmark	1	3.1a	
		(ii)	Thumb indicates direction (of movement of wire), first/index finger in direction of field and middle/second in direction of current	1	1.2	ALLOW a labelled diagram showing Fleming's Left-Hand rule ALLOW pointed finger for first/index finger
	(b)		(Current-carrying) wire has a magnetic field (around it) The (magnetic) fields of the wire and magnet interact \checkmark	2	1.1×2	ALLOW 'motor effect' / wire and magnet exert a force on each other
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0054(\mathrm{~N})$ or $5.4 \times 10^{-3}(\mathrm{~N})$ award 4 marks Select and apply: force $=$ magnetic flux density \times current \times length Conversion: $4.5(\mathrm{~cm})=0.045(\mathrm{~m}) \checkmark$ (force $=$) $0.060 \times 0.045 \times 2.0$ (force $=$) $0.0054(\mathrm{~N})$ or $5.4 \times 10^{-3}(\mathrm{~N}) \checkmark$	4	$\begin{gathered} 1.2 \\ 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW 3 marks for any incorrect conversion of 4.5 cm e.g. $0.54(\mathrm{~N}) ; 4.5 \mathrm{~cm}$ used instead of 0.045 m
	(d)		The force doubles / becomes $0.0108(\mathrm{~N})$ Because the force is proportional to the current	2	2.1×2	ALLOW ECF from (c) - doubled force should be 1.08 N if answer to part (c) is 0.54 N

| Question | | Answer | Marks | $\begin{array}{c}\text { AO } \\ \text { element }\end{array}$ | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9}$ | (a) | $\begin{array}{l}\text { (Speed is the same but) velocity is different/changes } \\ \text { (because of change in direction) or telescope accelerates } \\ \checkmark\end{array}$ | $\mathbf{2}$ | $\mathbf{3 . 1 b}$ | |
| (NO), the force is perpendicular to direction of velocity / | | | | | |
| towards the Sun / centre of circle / centripetal force \checkmark | | | | | |$)$

Question			Answer	Marks	AO	Guidance
10	(a)	(i)	A: (Constant) deceleration B: Constant / same / steady velocity / zero acceleration C: (Constant) acceleration	3	2.1×3	ALLOW slowing down ALLOW speed for velocity ALLOW speeding up
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=4.0\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ or $4\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award 3 marks acceleration $=$ gradient (of line) $\begin{aligned} & \text { (acceleration }=)[30-10] \div 5 \text { or } 20 \div 5 \\ & \text { (acceleration }=\text {) } 4.0\left(\mathrm{~m} / \mathrm{s}^{2}\right) \text { or } 4\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW $\mathrm{a}=(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ or $\mathrm{a}=\left(\mathrm{v}^{2}-\mathrm{u}^{2}\right) / 2 \mathrm{~s}$
	(b)	(i)	Momentum is conserved AW (in the collision) Momentum of car $=15000-9000(=6000 \mathrm{~kg} \mathrm{~m} / \mathrm{s})$	2	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $6.0 / 6(\mathrm{~m} / \mathrm{s})$ award 3 marks Recall and rearrange to give: velocity $=$ momentum \div mass $\begin{aligned} & =6000 \div 1000 \checkmark \\ & \text { speed }=6.0 / 6(\mathrm{~m} / \mathrm{s}) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	IGNORE speed = momentum / mass

Question			Answer	Marks	AO element	Guidance
11	(a)		(gamma) the exposure time / length of treatment is less AW gamma is irradiation (because it is external) ORA \checkmark	2	$\begin{aligned} & 3.2 \mathrm{a} \\ & 3.2 \mathrm{~b} \end{aligned}$	
	(b)	(i)	Graph starts at 2.0×10^{7} (counts per second) Activity $=1.0 \times 10^{7}$ (counts per second) at 74 days and activity $=0.5 \times 10^{7}$ (counts per second) at 148 days A curve of decreasing gradient	3	2.1×2 3.1a	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $1 / 8$ award 3 marks Activity is halved after (each) half-life or fraction $=1 / 2$ after first half life Fraction $=1 / 4$ after 2 half-lives Fraction $=1 / 8$ (after 3 half-lives)	3	2.2×3	ALLOW activity $=1.0 \times 10^{7}$ (after 1 half-life) ALLOW activity $=0.5 \times 10^{7}$ (after 2 half-lives) ALLOW 0.125
	(c)		(Amaya is correct) The activity (of low-level waste) decreases rapidly (due to short half-life) AW ORA \checkmark (so after some years no longer dangerous) so no need for permanent burial ORA	2	$3.2 \mathrm{a} \times 2$	

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

