GCSE (9-1)

Physics B (Twenty First Century Science)

J259/03: Breadth in physics (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
S	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a Analyse information and ideas to interpret. AO3.1b Analyse information and ideas to evaluate. AO3.2 Analyse information and ideas to make judgements and draw conclusions. AO3.2a Analyse information and ideas to make judgements. AO3.2b AO3.3 Analyse information and ideas to draw conclusions. Analyse information and ideas to develop and improve experimental procedures. AO3.3b Analyse information and ideas to develop experimental procedures.

Question			Answer	Marks	AO element	Guidance
1	(a)		(D) bubble wrap reduces conduction / has low thermal conductivity \checkmark thicker insulation / more layers reduces heat loss (so slower than C) \checkmark OR (E) bubble wrap reduces conduction / has low thermal conductivity \checkmark metal foil reduces heat loss by radiation \checkmark	2	3.2a	ALLOW one mark for C and bubble wrap reduces conduction / has low thermal conductivity ALLOW bubble wrap doesn't conduct instead of low conductivity. IGNORE convection ALLOW foil reflects thermal radiation.
	(b)	(i)	experiment gives the same results / same data \checkmark if performed by another person / with similar equipment / in a different lab \checkmark	2	1.1	
		(ii)	Any one from: size / shape / thickness / material of tin volume / mass of water temperature of surroundings \checkmark	1	2.1	ALLOW amount of water

Question			Answer	Marks	AO element	Guidance
2	(a)	(i)	(use of biofuels has) increased \checkmark	1	3.1a	Increase could be shown by use of data.
		(ii)	Any one from: use of biofuels has been encouraged/government incentives, \checkmark more cost effective to reduce carbon (dioxide) emissions, \checkmark to make use of by-products/waste materials.	1	3.12	IGNORE renewable ALLOW cheap/not expensive. ALLOW to reduce/prevent climate change
	(b)	(i)	Any one from: trend shows (large) increase in wind \checkmark trend shows nuclear staying the same/ (slight) increase AND any one from: (supports statement because) if trends continue we will use more wind than nuclear (does not support statement because) we do not know if the trends will continue in the future	2	3.1b	ALLOW nuclear not (significantly) changed ALLOW evaluation based on both trends e.g. the evidence / it support this statement because wind is increasing and nuclear is not [2]
		(ii)	data includes nuclear which is not renewable \checkmark	1	3.2b	DO NOT ALLOW biofuel is not renewable.
		(iii)	any value from 9(\%) to 10(\%) \checkmark	1	2.2	

Question			Answer	Marks	AO element	Guidance
3	(a)		electrons (in atoms) \checkmark lose energy \checkmark	2	1.1	ALLOW electrons change energy levels (2 marks) DO NOT ALLOW beta decay or emission of particles
	(b)	(i)	(ultraviolet radiation is) ionising \checkmark damages / mutates DNA or cells OR causes cancer/tumours	2	1.1	ALLOW kills cells
		(ii)	(ultraviolet radiation) cannot penetrate the steel casing \checkmark	1	3.2 b	ALLOW radiation absorbed by steel casing ALLOW steel casing reflects (ultraviolet radiation inside the container).
	(c)		Any two from: (alpha radiation) not penetrating enough (to disinfect all of the water) alpha-emitting isotope could contaminate water supply \checkmark activity of alpha source will fall with time risk of handling alpha source	2	1.1	ALLOW alpha radiation cannot penetrate water DO NOT ALLOW alpha particles remain in the water IGNORE alpha cannot penetrate the steel case ALLOW alpha source may have a short half-life

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: |

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
5	(a)	(i)	our eyes (only) detect a (narrow) range of frequencies \checkmark this range does not include radio waves	2	1.1	ALLOW wavelength for frequency ALLOW the frequency is out of range ALLOW the frequency is too low ALLOW the frequency is below the visible range $=$ 2 marks ALLOW radio waves are not in the range of frequencies our eyes can detect = 2 marks
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.67$ award 4 marks $\begin{aligned} & 446 \mathrm{MHz}=446 \times 10^{6} \mathrm{~Hz} \checkmark \\ & =3.0 \times 10^{8} \div 446 \times 10^{6} \checkmark \\ & =0.67264 \ldots(\mathrm{~m}) \checkmark \\ & =0.67(\mathrm{~m})(2 \mathrm{sf}) \checkmark \end{aligned}$	4	$\begin{gathered} 1.2 \\ 2.1 \times 2 \\ 1.2 \end{gathered}$	ALLOW substitution and calculation using their conversion ALLOW their calculated value seen and converted to 2 s.f.
	(b)		oscillations (in the electrical circuits) \checkmark	1	1.1	

Question		Answer	Marks	AO element	Guidance
6	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=5.0\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award 3 marks $\begin{aligned} & \text { recall acceleration }=\text { change in velocity } \div \text { time } \checkmark \\ & 25 \times 0.5=12.5 \checkmark \\ & (25 \times 0.5 \text { OR } 12.5) \div 2.5 \checkmark \\ & =5.0\left(\mathrm{~m} / \mathrm{s}^{2}\right) \checkmark \end{aligned}$	4	$\begin{aligned} & 1.2 \times 2 \\ & 2.1 \times 2 \end{aligned}$	ALLOW final answer to be either negative or positive. ALLOW 5 ALLOW max 3 if incorrect calculation of change in speed
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If $\mathbf{5 0 0 0} \leq$ answer ≤ 18000 award 4 marks recall momentum $=$ mass \times velocity AND rearrange force $=$ change in momentum \div time \checkmark estimate of mass \checkmark $(16 \times$ estimate of mass) $\div 2.2 \checkmark$ 5000 to $18000(\mathrm{~N})$ (inclusive) \checkmark	4	$\begin{aligned} & 1.2 \times 2 \\ & 2.1 \times 2 \end{aligned}$	Values given based on mass for car being between 700 kg to 2500 kg . ALLOW recall Force $=$ mass x acceleration AND $\mathrm{a}=\Delta \mathrm{V} \div \mathrm{t}$ ALLOW (\pm) $7.27\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ seen

Question			Answer	Marks	AO element	Guidance
7	(a)		(measure mass using) balance AND (measure volume using) measuring cylinder \checkmark AND any two from: accuracy of balance specified, e.g. 1 g or $0.1 \mathrm{~g} \checkmark$ method to compensate for mass of container \checkmark read volume at eye level to avoid parallax error \checkmark read volume from bottom of meniscus \checkmark	3	1.2	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=7.18 \times 10^{-4}$ award 2 marks $\begin{aligned} & 0.12 \times 0.13 \times 0.046 / 0.0007176 / 7.176 \times 10^{-4} \checkmark \\ & 7.18 \times 10^{-4} \checkmark \end{aligned}$	2	$\begin{aligned} & 2.1 \\ & 1.2 \end{aligned}$	
	(c)		put sample of yoghurt in a syringe \checkmark read volume from scale on syringe \checkmark OR fill container to top and ensure top is level \checkmark refill container with water and then measure volume of water with measuring cylinder \checkmark	2	3.3a	ALLOW other sensible suggestions reasonable idea to accurately contain a sample in a measurable volume or a known volume specifies method for measuring this volume IGNORE pour it in a container

Question			Answer	Marks	AO	Guidance
8	(a)	(i)	(measure length of tray with) ruler / tape measure \checkmark (measure time using) timer / stop clock / stopwatch \checkmark AND any one from: measure time to travel several lengths of tray \checkmark video the waves and replay in slow motion \checkmark	3	1.2	ALLOW e.g. paper marked in centimetres IGNORE measure the time / measure the distance
		(ii)	Any one from: method to drop tray identically, e.g. rest end of tray on book, then remove book \checkmark alternative method to generate waves, e.g. use vibrating dipper/bar as in a ripple tank	1	3.3b	ALLOW drop tray from same height or tip the tray to the same angle / stated angle IGNORE vague methods e.g. use a machine to drop the tray ALLOW e.g. use a ripple tank/apparatus with a set frequency or use a vibrating motor
	(b)	(i)	point plotted to within half a small square \checkmark	1	2.2	
		(ii)	as depth increases speed increases \checkmark description of non-linear relationship / idea that the variables are not proportional	2	3.1a	
		(iii)	Line drawn up from x-axis and along to y-axis \checkmark any value between 0.1 and $0.2 \checkmark$	2	2.2	Rationale for these values is that the candidate should recognise it is a curve and extrapolate using a curve, not a straight line.

Question			Answer	Marks	AO element	Guidance
9	(a)		(some energy is transferred by) radiation / electromagnetic waves / gamma rays \checkmark (some energy is transferred to/from a store of) kinetic energy of the particles	2	1.1	DO NOT ALLOW thermal energy (given in (b)(ii)) ALLOW the KE of the neutron
	(b)	(i)	Any two from: More neutrons so more fission \checkmark More uranium for the neutrons to hit \checkmark The neutron(s) released in one fission go on to cause more fissions \checkmark	2	1.1	ALLOW neutrons released in one fission go on to cause further reactions / split more nuclei $=2$ marks
	(b)	(ii)	(coolant A) because difference in density is larger than difference in specific heat capacity calculation to support argument (e.g. s.h.c. of B is 8.7 times greater than A, but density of A is 12.8 times greater than B) \checkmark	2	3.2b	ALLOW A has lower shc but it is a lot more dense Alternative approach: A removes more energy per m^{3} per ${ }^{\circ} \mathrm{C}$ e.g. $150 \times 11000=1.65 \mathrm{MJ} / \mathrm{m}^{3}{ }^{\circ} \mathrm{C}$ but $1300 \times 860=1.118 \mathrm{MJ} / \mathrm{m}^{3}{ }^{\circ} \mathrm{C}$

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{1 0}$ | (a) | Any one from:
 (vibration in P-waves is) parallel / same direction, \checkmark
 (vibration in S-waves is) perpendicular / right angles \checkmark
 AND
 to direction of travel / propagation / energy transfer / AW
 \checkmark | $\mathbf{2}$ | $\mathbf{1 . 1}$ | |
| | (b) | (i)S-waves do not travel through liquids / only travel through
 solids \checkmark
 liquid in Earth's core has blocked / reflected S-waves \checkmark | $\mathbf{2}$ | $\mathbf{2 . 1}$ | IGNORE references to P-waves |
| | (ii)waves reflect from boundaries \checkmark
 waves pass through mantle by reflection / refraction /
 diffraction \checkmark | $\mathbf{2}$ | $\mathbf{2 . 1}$ | ALLOW wave passing through mantle and
 reflecting from crust or core on diagram $=2$ marks | |

Question		Answer	Marks	AO element	Guidance	
$\mathbf{1 1}$	(a)		resultant force must be zero \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	ALLOW net force is zero IGNORE balanced / all forces are equal
	(b)	(i)	downwards arrow drawn \checkmark labelled weight / force of gravity / contact force \checkmark	$\mathbf{2}$	$\mathbf{2 . 1}$	ALLOW gravity
	(ii)	They (both) accelerate upwards \checkmark OR Elastic rope contracts/shortens/tension becomes zero, pulling the metal ring up \checkmark	$\mathbf{1}$	$\mathbf{2 . 1}$		

Question			Answer	Marks	AO element	Guidance
12	(a)		wavelength / colour (of emitted light) depends on temperature the stars have different temperatures \checkmark	2	1.1	ALLOW C has shortest wavelength / B has longest wavelength ALLOW C is the hottest / B is the coolest / blue is hotter than red ORA ALLOW hottest star / C has shortest wavelength / is bluer OR coolest star / B has longest wavelength / is redder $=2$ marks IGNORE different colours have different wavelengths - stem
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 625 award 3 marks recall / rearrange time $=$ distance \div speed \checkmark $\left(6 \times 10^{18} \div 3.0 \times 10^{8}=\right) 2 \times 10^{10}(\mathrm{~s})$ $\left(2 \times 10^{10} \div 3.2 \times 10^{7}=\right) 625 \text { (years) }$	3	$\begin{gathered} 1.2 \\ 2 \times 2.1 \end{gathered}$	ALLOW 1 mark for $2 \times 10^{n}, \mathrm{n} \neq 10$ ALLOW 2 marks for $6.25 \times 10^{n}, n \neq 2$
		(ii)	(all electromagnetic radiation) travels at the same speed (in space)	1	2.1	ALLOW travels at the speed of light

Question			Answer	Marks	AO element	Guidance
13	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 224 award 4 marks $\begin{aligned} & 5.0 \mathrm{~cm}=0.050 \mathrm{~m} \checkmark \\ & \text { Select equation: } \mathrm{E}=1 / 2 \mathrm{kx}^{2} \checkmark \\ & \text { Substitute (and rearrange); } \mathrm{k}=2 \times 0.28 / 0.05^{2} \checkmark \\ & 224(\mathrm{~N} / \mathrm{m}) \checkmark \end{aligned}$	4	$\begin{gathered} 1.2 \\ 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW 3 marks if unit conversion omitted (0.0224)
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 4 award $\mathbf{3}$ marks recall $1 / 2 \mathrm{mv}^{2}$ and rearrange to give: $v=\sqrt{ }(2 \mathrm{E} / \mathrm{m})$ substitute: $v=\sqrt{ }(2 \times 0.32 / 0.040))^{\checkmark}$ $4.0(\mathrm{~m} / \mathrm{s}))^{\checkmark}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW 2 marks for 16
	(c)	(i)	work done $=$ force \times distance moved \checkmark	1	1.2	ALLOW W = Fs
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0625$ award 4 marks calculate GPE gain: $0.040 \times 10 \times 0.50 / 0.20(\mathrm{~J}) \checkmark$ calculate thermal energy transfer: ($0.25-0.20=$) 0.05 J substitute into work done equation: $0.05=F \times 0.80 \checkmark$ calculate F: 0.0625 (N) \checkmark	4	2.1	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

