GCSE

Physics B (Twenty First Century)

Unit J259H/03: Higher Tier - Breadth in physics
General Certificate of Secondary Education

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
3	Incorrect response
\bigcirc	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
$/$	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
1	(a)	Any two from: planets are not all made of rock / some are made of gas \checkmark planets do not orbit in perfect circles / in ellipses not all planets have moons (e.g. Venus, Mercury) moons not all rocky/may be icy (e.g. Enceladus) [even though they may all have rocky cores)	2	1.1×2	ALLOW specific correct examples, e.g. Jupiter not made of rock / made of gas, Venus does not have a moon, Saturn has moon(s) of ice ALLOW a correctly identified statement quoted or identified from the report IF more than two examples given apply list rule IGNORE attempts to qualify a correctly identified statement with an incorrect example
	(b)	dust and gas pulled together by gravity	2	1.1×2	ALLOW dust / gas / matter / nebula Only give credit for responses that describe the formation of the solar system
	(c)	mass is converted into energy (of radiation) \checkmark	1	1.1	e.g. quoting $E=m c^{2}$ ALLOW mass is lost in the form of energy ALLOW mass is transferred/turned into energy

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
2	(a)		(transferred by) electric current / electrically / electrical working \checkmark	1	1.1	ALLOW by a flow of electrons / current / electricity / IGNORE references to National Grid / wires /cables /transformers
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $864(\mathrm{~J})$ award 3 marks recall and rearrange equation: energy $=$ p.d. \times charge substitution $2 \times 1.2 \times 360$ $=864(\mathrm{~J}) \checkmark$	3	1.2 2.1 2.1	Equations used to calculate energy must have energy as the subject (accept W for E). ALLOW $\mathrm{E}=\mathrm{ItV}$ and $\mathrm{Q}=\mathrm{It} / \mathrm{E}=\mathrm{Pt}$ and $\mathrm{P}=\mathrm{VI}$ and $Q=$ It $/ 360 \times 1.2$ seen Correct substitutions gain m.p 1 also DO NOT ALLOW bald ' 86400 ' or ' 1728 ' or ' 432 '. Credit can only be given for working
	(b)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3.0 (A) award 4 marks Recall and rearrange: current $=$ charge $/$ time Convert 2 minutes $=120 \mathrm{~s} \checkmark$ $\begin{aligned} & =360 / 120 \\ & =3.0(\mathrm{~A}) \end{aligned}$	4	1.2 2.1 2.1 2.1	ALLOW 3 marks for 180 (unit conversion omitted) ALLOW '3 (A)'

Question			Answer	Marks	AO element	Guidance
3	(a)		FIRST CHECK THE ANSWER If answer $=\mathbf{7 2 0} 000(\mathrm{~J})$ award 2 marks substitution $4.5 \times 1600 \times(120-20) \checkmark$ $=720000(\mathrm{~J}) \checkmark$	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	ALLOW 20 or 120 for ΔT to give 144000 or 864000 Does not need comparison with 700000 for the mark
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 480 (s) award 3 marks recall and rearrange: time = energy / power substitution 720000 / 1500 $=480(\mathrm{~s})$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ECF (a) or energy $=700000$ (J) ALLOW for 2 marks ' 48 ' or ' 4800 ' as a transcription error.
		(ii)	energy transferred to the metal radiator / in the wires \checkmark	1	1.1	ALLOW 'energy is lost to the surroundings' IGNORE it heats up the room / ignore efficiency arguments DO NOT ALLOW 'loss' on its own

Question			Answer	Marks	AO element	Guidance
4	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 89 / 90 / $88.9(\mathrm{~m} / \mathrm{s})$ award 2 marks $320 \times 1000 / 3600$ $=88.9=89(\mathrm{~m} / \mathrm{s}) \downarrow$	2	2.2×2	ALLOW for 1 mark answers that round to $8.89 \times 10^{\text {n }}$ ALLOW answers that round to 88.9
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 75 (m) award 3 marks select and rearrange equation: $s=\left(v^{2}-u^{2}\right) / 2 a$ $\begin{aligned} & =\left(20^{2}-80^{2}\right) /(2 \times-40) \\ & =75(\mathrm{~m}) \checkmark \end{aligned}$ OR Recall and rearrange $s=$ (average) speed x (change in $v \div$ acceleration) $\begin{aligned} & =50 \times 1.5(\mathrm{~s}) \\ & 75(\mathrm{~m}) \vee \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW one mark for correct substitution before rearrangement $20^{2}-80^{2}=2 \times-40 \times s$ IGNORE incorrect signs, but DO NOT ALLOW 20^{2} $+80^{2}$ ALLOW -75 (m) ALLOW if both formulae are seen separately ALLOW evaluation of distance using $1.5 \times$ either 80 or 20
	(b)	(ii)	velocity has a direction/is a vector direction is changing (as it turns corner)	2	1.1×2	

Question			Answer	Marks	AO element	Guidance
6	(a)		sound is transmitted/vibrations pass through bones in ear this works best/more sensitive over a limited range of frequencies/between 1000 to 3000 Hz	2	1.1×2	IGNORE ear drum IGNORE pick up / detect ALLOW low frequency produce smaller vibrations (in our ears) ORA ALLOW e.g. low frequencies produce smaller vibrations in the bones ($=2 \mathrm{mks}$) ALLOW higher frequencies are more within our hearing range / lower frequencies are on the edge of our hearing range / we are more/less sensitive to certain frequencies DO NOT ALLOW just 'higher frequencies are easier to hear' DO NOT ALLOW just 'we are sensitive to certain frequencies'
	(b)	(i)	Any one from: distance between phone/James and Mia background noise time to listen to each sound same frequency/ies	1	3.3a	IGNORE distance between Mia and wall IGNORE the same phone/speaker/app
	(b)	(ii)	waves are transmitted / pass through the wall but some waves are absorbed / reflected by the wall	2	1.1×2	ALLOW as vibrations / as longitudinal waves / as compressions and rarefactions ALLOW a description of absorption e.g. the wave loses energy by vibrating the particles in the wall

Question		Answer	Marks		Guidance
					ALLOW a description of reflection e.g. the wave echoes off the wall/bounces back from the wall
(c)		wider range covering frequencies higher than 2 kHz / 2000 Hz more closely spaced frequencies smaller volume steps / more sensitive volume control	3	3.3b x 3	Or clear ref to table e.g. 'should have a range which went higher than those used in their experiment' ALLOW any step less than 880 Hz ALLOW volume settings between 0 and 1 ALLOW increase distance (between Mia and phone) so volume setting can be higher IGNORE repeat and average

Question			Answer	Marks	AO element	Guidance
7	(a)		changing magnetic field (around coil) induces a p.d. / voltage \checkmark	2	1.1×2	ALLOW magnetic field is cut (by coil) ALLOW produces p.d./voltage
	(b)	(i)	all points plotted correctly at $(800,6.7)(1000,9.1)$ $(1200,11)$ line of best-fit	2	$\begin{aligned} & 2.2 \\ & 1.2 \end{aligned}$	To within ± 0.5 small divisions in each direction IGNORE lobf below 200 turns
		(ii)	correct value read from candidate's line, to within half a small square	1	2.2	
		(iii)	use motor/machine/electrical device/mechanical device/pendulum (to pull magnet at fixed speed)	1	3.3b	ALLOW drop magnet from fixed height
	(c)		current in coil generates a magnetic field which opposes the change causing it / is a like pole	2	1.1×2	DO NOT ALLOW references to positive / negative / charges

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
8	(a)		correct numbers for neutron (1 over 0) correct numbers for electron (0 over -1) \checkmark	2	1.1×2	
	(b)		Any two from: half-life of Tc-99m is short (compared to transport time) so (almost) all Tc-99m would have decayed \checkmark gamma is more penetrating (than beta) so it would be more difficult to shield as it is transported to the hospital	2	3.2b x2	ALLOW it only has a half-life of 6 hours ALLOW it would have decayed a lot/ its activity would be too low
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 6.25 (\%) award 2 marks 4 half lives $=6.25(\%) \vee$	2	2.2×2	ALLOW $24 \div 6=4$ seen ALLOW evidence of four successive halvings ALLOW 93.75(\%) (percent of Tc-99m that has decayed)
	(c)	(ii)	Ionger time for thallium (because it has a longer half-life)/ orAr causing greater radiation dose/ risk of cancer / ORA	2	3.1b x2	ALLOW more damage to cells ALLOW for 2 marks exposure is greater if the patient is exposed for more time

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 9 | (a) | The material in the tablet is denser than water
 AND
 Water is denser than the gas in the bubbles \checkmark | $\mathbf{1}$ | $\mathbf{1 . 1}$ | |
| | (b) | upwards arrow on tablet labelled reaction \checkmark
 force labelled $18 \mathrm{mN} \checkmark$ | $\mathbf{2}$ | $\mathbf{1 . 1} \mathbf{x 2}$ | ALLOW contact force / normal reaction force
 Independent mark, unit required |
| (c) | (i)Any two from:
 pressure (of water) \checkmark
 pressure increases with depth / there is a pressure | | | | |
| difference between the top and bottom of the tablet \checkmark | | | | | |
| so net force is upwards \checkmark | | | | | |

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
10	(a)			1	1.1	
	(b)	(i)	as temperature increases, potential difference increases \checkmark (because) as temperature increases, resistance of thermistor/R2 ${ }_{2}$ decreases (so) p.d. across thermistor falls (so p.d. across R_{1} must increase)	3	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 1.1 \\ 1.1 \end{gathered}$	
	(b)	(ii)	at lower temperatures there are smaller changes in p.d. ORA \checkmark justified with evidence from graph	2	3.2b x2	IGNORE sensitivity ALLOW smaller gradient/less steep at lower temperatures ORA ALLOW e.g. it goes up 0.1 between 10 and 20 ALLOW for 2 marks at lower temperatures there are smaller changes in p.d. for the same change in temperature
	(c)	(i)	systematic \checkmark	1	1.1	ALLOW equipment / zero / apparatus
	(c)	(ii)	current heats the thermistor use lower current / increase R_{1} / decrease voltage / add a heat sink (OWTTE) / measure the effect and take it into account	2	$\begin{gathered} 2.1 \\ 3.3 a \end{gathered}$	ALLOW because of the current

Question			Answer	Marks	$\begin{gathered} \mathrm{AO} \\ \text { element } \end{gathered}$	Guidance
11	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.0 ($\mathbf{N m}$) award 3 marks Recall: W = mg $=1.0 \times 10 \times 0.2 v$ $=2.0(\mathrm{Nm}) / 200 \mathrm{Ncm}$	3	1.2 2.1 2.1	ALLOW Force down $=10 \mathrm{~N}=1 \mathrm{~kg} \times 10$ Also gains m.p. 1 ALLOW for 2 marks $1.0 \times 10 \times 20=200$ ALLOW '2' (Nm)
	(b)	(i)	moment due to metre ruler not included \checkmark	1	3.2a	ALLOW any clear reference to the unbalanced nature of the metre rule e.g the ruler has mass/weight
		(ii)	centre / balance metre ruler on pivot / use ruler made of material with negligible mass /use weights much larger than weight of ruler / use extra weights to balance ruler before checking predictions \checkmark	1	3.3b	

Question			Answer	Marks	$\begin{array}{\|c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
12	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{8}(\mathrm{kg} \mathrm{m} / \mathrm{s})$ award 2 marks Recall: momentum $=$ mass \times velocity $/ 5 \mathrm{~kg} \times 1.6 \mathrm{~m} / \mathrm{s}$ $=8(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$	2	$\begin{aligned} & 1.2 \\ & 2.1 \end{aligned}$	
	(b)	(i)	$\begin{aligned} & \text { momentum of } \mathbf{B}=2.5 \mathrm{~kg} \times 1.6 \mathrm{~m} / \mathrm{s} \\ & =(-) 4(\mathrm{~kg} \mathrm{~m} / \mathrm{s}) \checkmark \end{aligned}$ Total momentum before collision $=8(\mathrm{~kg} \mathrm{~m} / \mathrm{s})-4(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$ $=4(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$ Total momentum after collision $=4(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$ and total mass $\times v=7.5(\mathrm{~kg}) \times v=4(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$ $v=4(\mathrm{~kg} \mathrm{~m} / \mathrm{s}) / 7.5(\mathrm{~kg})=0.53(\mathrm{~m} / \mathrm{s}) \checkmark$	4	1.1 2.1 2.1 2.1	ALLOW for 3 marks $1.6(\mathrm{~m} / \mathrm{s})$ with working shown (the candidate has added 8 and 4 to give the total momentum $=12$) ALLOW bald answer 0.53 only (=2 mks) (candidate may have used only the momentum of trolley B) ALLOW if no other mark awarded, 1 mark for 7.5 (= total mass after the collision) OR m.p. 3 \& 4 can be Momentum of joined trolleys $=7.5(\mathrm{~kg}) \times 0.5(\mathrm{~m} / \mathrm{s})$ $=3.75(\mathrm{~kg} \mathrm{~m} / \mathrm{s}) \downarrow$ Which agrees with the momentum before (so speed $\approx 0.5(\mathrm{~m} / \mathrm{s}) \checkmark$

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $27(\mathrm{~N})$ award 4 marks $\begin{aligned} & \text { select and rearrange to get } F=\Delta p / \Delta t \checkmark \\ & \text { for } \mathbf{A}, \Delta p=5 \mathrm{~kg} \times(0.53(\mathrm{~m} / \mathrm{s})-1.6(\mathrm{~m} / \mathrm{s})) \\ & \mathbf{O R}=(-) 5.35(\mathrm{~kg} \mathrm{~m} / \mathrm{s}) \checkmark \\ & F=5.35(\mathrm{~kg} \mathrm{~m} / \mathrm{s}) / 0.20(\mathrm{~s}) \checkmark \\ & =26.75(\mathrm{~N})==27(\mathrm{~N}) \checkmark \end{aligned}$	4	1.1 2.1 2.1 2.1	ECF throughout ALLOW $F=$ momentum \div time $/ F=m \times \Delta v \div t$ Using $v_{\text {final }}=0.5(\mathrm{~m} / \mathrm{s})$ gives $\Delta p=5.5(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$ Also gains m.p. 2 and $F=27.5(\mathrm{~N})$

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
13 (a)	(i)	Out of the page \checkmark	1	1.2	
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.2 (N) award 4 marks select force $=$ magnetic flux density x current x length of conductor , calculate length correctly, including unit conversion length $=0.025 \times 200=5(\mathrm{~m})$ $\begin{aligned} & =0.40 \times 0.60 \times 5 \checkmark \\ & =1.2(\mathrm{~N}) \checkmark \end{aligned}$	4	1.2 2.2 2.1 2.1	ALLOW 3 marks if 200 turns omitted, 0.0060 N ALLOW 3 marks if using 5000 mm , 1200 N ALLOW 2 marks if 200 turns omitted and no conversion of 25 mm to $\mathrm{m}, 6 \mathrm{~N}$ ALLOW 1 mark for a substitution that shows evidence of the formula Also gains m.p. 1 and m.p. 2

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

