GCSE (9-1)

Physics B (Twenty First Century Science)

J259/02: Depth in physics (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
\mathbf{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
DO NOT ALLOW	Separates marking points
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Underlined words must be present in answer to score a mark
AW	Or reverse argumerd
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret. AO3.2 Analyse information and ideas to evaluate. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

Question			Answer	Marks	AO element	Guidance
1	(a)		electric \checkmark	1	1.1	
	(b)		Opposite charges Attract (AW)	2	2.1 2.1	ALLOW 'positive and negative charges' OR 'electrons and positive ions' DO NOT ALLOW poles/magnetically IGNORE 'opposites' on its own OR + and - on their own ALLOW attract if e.g. positive electrons attract negative electrons OR positive ions attract negative ions
	(c)		(NO) Only electrons move/are transferred OR atoms/protons don't move/are not transferred \checkmark The balloon picks up electrons (from the cloth) OR the cloth loses electrons (to the balloon)	2	1.1 1.1	ALLOW alternative wording

Question			Answer	Marks	AO	Guidance
2	(a)	(i)	Frequency $=50 \underline{\mathrm{~Hz}}$ and Potential difference $=230 \underline{\mathrm{~V}}$,	1	1.1	The units must also be stated for 1 mark ALLOW hertz and volt
		(ii)	Direct: horizontal line in either + or - region Alternating: A sine or cosine shape curve that oscillates in both + and - regions	3	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	ALLOW voltage that is always positive ALLOW a varying voltage Example:
		(iii)	2000 (J) \checkmark	1	2.1	
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{6 0 0}(\mathbf{k W ~ h})$ award $\mathbf{3}$ marks Conversion: 1500 (W) = 1.5(kW) $\begin{aligned} & =1.5 \times 400 \quad \checkmark \\ & =600(\mathrm{~kW} \mathrm{~h}) \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	IF NO ANSWER ON ANSWER LINE CHECK TABLE ALLOW 2 marks if power of ten error e.g. for 1500 $\times 400=600000$ (no conversion) OR $150 \times 400=6000$ (incorrect conversion)
		(ii)	Kettle A A has the lowest power rating/transfers the least energy in the same time (AW)	2	$\begin{aligned} & 3.2 \mathrm{~b} \\ & 3.2 \mathrm{a} \end{aligned}$	ALLOW Kettle A has lowest power
	(c)		Transformer \checkmark	1	1.1	

Question			Answer	Marks	AO element	Guidance
3	(a)	(i)	absorbs scatters	2	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	ALLOW reflects
		(ii)	blue \checkmark	1	2.1	
	(b)		(Sarah is incorrect because) Any two from: Not a straight line /gradient is not constant Graph does not pass through origin The graph levels off / is a curve	2	3.16×2	
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=3.0 \times 10^{8}(\mathrm{~m} / \mathrm{s})$ award 3 marks $\begin{aligned} & =5.6 \times 10^{-7} \times 5.4 \times 10^{14} \\ & =3.024 \times 10^{8} \text { or } 302400000(\mathrm{~m} / \mathrm{s}) \\ & =3.0 \times 10^{8}(\mathrm{~m} / \mathrm{s}) \end{aligned}$	3	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	ALLOW substitution of decimals with power of ten error e.g. $0.000056 \times 540000000000$ ALLOW any correct rounding including 300000000 or 3×10^{8} and any correct power of 10 e.g 30×10^{7} ALLOW their answer correctly written in standard form to 2sf

Question			Answer	Marks	AO element	Guidance
4	(a)	(i)	Any one from: Planet / Earth is smaller ORA Planet / Earth orbits the star / Sun Planet / Earth does not produce energy (by fusion) / there is no nuclear fusion ORA \checkmark Planet / Earth is cooler than the Sun ORA Planet / Earth is made of rock and Sun from gas Planet / Earth can support life ORA \checkmark	1	1.1	ALLOW Planet/Earth is made of rock and Sun is not ALLOW Sun is made from gas and planet/Earth is not

Question	Answer	Marks	AO element	Guidance
(ii)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Clear and labelled diagram of the planetary system including star and 2 or more planets in separate orbits. AND Detailed description of the processes in the formation of a star and planets. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear and labelled diagram of the planetary system including star and 2 or more planets in separate orbits. AND Partial description of the processes in the formation of a star and planets. OR Detailed description of the processes in the formation of a star and planets. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Clear and labelled diagram of the planetary system. OR An attempt to describe a process in the formation of a star or the planets. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.	6	$\begin{aligned} & 1.1 \times 4 \\ & 2.1 \times 2 \end{aligned}$	AO1.1 Knowledge and understanding of star formation and planets For example - Dust / gas cloud/nebula - Gravitational collapse of the dust/gas cloud/nebula - Temperature of dust / cloud /nebula increases - Energy produced through fusion (of nuclei) - A stable star is formed when outward forces/pressure equal to the inward forces/pressure - Dust/gas cloud join up to produce planets - Gravity causes dust/gas/rock to orbit star or form planets - The planets orbit around the star AO2.1 Application of knowledge and understanding of planetary systems For example - Planets shown in circular/elliptical orbits around the star - Star and planet(s) labelled

Question		Answer	Marks	AO element	Guidance	
			0 marks No response or no response worthy of credit.			
	(b)	(i)	More distant (galaxy) moves faster ORA \checkmark	$\mathbf{1}$	$\mathbf{3 . 2 b}$	DO NOT ALLOW example of one galaxy e.g. the tadpole galaxy is moving faster
	(ii)	Cigar galaxy, Tadpole galaxy \checkmark	$\mathbf{3 . 2 a}$			
Higher red-shift $=$ Last entry is GN-z11 \checkmark	$\mathbf{3 . 2 a}$					

Question			Answer	Marks	AO element	Guidance
5	(a)		(Alpha radiation) is stopped by plastic / cannot pass through plastic	1	1.1	ALLOW cannot travel/penetrate far ALLOW cannot travel through (materials/case) ALLOW alarm/plastic absorbs all the radiation
	(b)		Place radiation measuring device / Geiger counter close to the source/fire alarm No change in radiation / counts / count-rate detected (so smoke alarm is safe) OR no increase in count rate is detected OR only background radiation detected \checkmark	2	$\begin{aligned} & \hline 3.3 a \\ & 3.2 b \end{aligned}$	ALLOW no radiation detected ALLOW beeps/clicks for counts ALLOW reverse arguments e.g. increase in count rate shows radiation is leaking (so alarm not safe) ALLOW device can detect whether radiation is passing through the case OR use it to see if any radiation comes through the case 1 mark max
	(c)		Gamma radiation will pass through plastic/case /alarm ORA \checkmark Gamma radiation can damage/mutate cells	2	$\begin{aligned} & 2.1 \\ & 1.1 \end{aligned}$	ALLOW may cause cancer / kill cells
	(d)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer lies with $\mathbf{3 8 0}$ to $\mathbf{4 2 0}$ (years) award $\mathbf{2}$ marks Evidence of horizontal line at 20000 counts per second Half-life = in range 380 to 420 (years)	2	$\begin{gathered} 1.2 \\ \text { 3.1a } \end{gathered}$	ALLOW two horizontal lines and corresponding vertical lines one at half the activity of the other.
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{1 0 0 0 0}$ (counts per second) award 3 marks $=40000 \div 2$ or 20000 (counts per second) after first half-life \checkmark $\begin{aligned} & =20000 \div 2 \checkmark \\ & =10000 \text { (counts per second) (after 2 }{ }^{\text {nd }} \text { half-life) } \checkmark \end{aligned}$	3	$\begin{aligned} & 2.1 \\ & \\ & 2.1 \\ & 2.1 \end{aligned}$	

Question	Answer	Marks	$\begin{gathered} \mathrm{AO} \\ \text { element } \end{gathered}$	Guidance
(iii)	Graph starts at 30000 (counts per second) A curve of decreasing gradient Curve showing half-life to be the same	3	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW Curve passes through (400, 15000) and (800,7500) ± 2 small squares. ALLOW ECF from d(i) if 400 years not used

Question			Answer	Marks	AO element	Guidance
6	(a)		(stationary) Section C (constant speed) Section B (accelerating) Section A	3	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	
	(b)	(i)	Section Y Velocity increases (as time increases) OR It is accelerating \checkmark	2	$\begin{aligned} & 3.1 \mathrm{a} \\ & 3.1 \mathrm{a} \end{aligned}$	ALLOW the gradient is positive IGNORE gradient is increasing/steeper IGNORE the line is going up
		(ii)	Section X \checkmark Velocity decreases (as time increases) OR It is decelerating	2	$\begin{aligned} & 3.1 \mathrm{a} \\ & 3.1 \mathrm{a} \end{aligned}$	ALLOW the gradient is negative IGNORE gradient is decreasing IGNORE the line is going down
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=5.6 \mathrm{~m} / \mathrm{s}^{2}$ or $\mathrm{m} \mathrm{s}^{-2}$ or metres per seconds squared award 3 marks for the calculation $\begin{aligned} & =[36.5-8.5] \div 5.0=28 \div 5 \\ & =5.6 \quad \checkmark \end{aligned}$ $=5.6 \mathrm{~m} / \mathrm{s}^{2}$ or $5.6 \mathrm{~ms}^{-2}$ or 5.6 metres per seconds squared	3	$\begin{aligned} & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	
	(d)	(i)	500 to $7500 \mathrm{~kg} \quad \checkmark$	1	2.1	

Question	Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=(\mathrm{d})(\mathrm{i}) \times(\mathrm{c})(\mathrm{N})$ award 3 marks for the calculation Recall and apply: force $=$ mass \times acceleration (force $=$) (d)(i) $\times(\mathbf{c})$ $=$ value of $(d)(i) \times(c)$ stated	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW ECF from (c) and (d)(i)

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
7	(a)	(i)	Ring around the last/right $l-V$ characteristic (curve with decreasing gradient)	1	1.1	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{3 0}$ (C) award 3 marks Conversion: $500 \mathrm{~mA}=0.5(00) \mathrm{A} \quad \checkmark$ $\begin{aligned} & =0.5 \times 60 \\ & =30(C) \quad \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW 2 marks for power of ten error e.g. $500 \times$ $60=30000$ (no conversion) OR $5 \times 60=300$ (incorrect conversion)
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.2 (W) award 3 marks Recall and apply: power $=$ potential difference \times current $\begin{aligned} & =2.4 \times 0.5 \\ & =1.2(\mathrm{~W}) \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW ECF from (a)(ii), 3 marks for 1200 if ($2.4 \times$ 500)(no conversion) OR e.g. for 12 if (2.4×5) (incorrect conversion) is used in (a)(ii) ALLOW 2 marks for 1200 if (2.4×500)(no conversion) OR e.g. for 12 if $(2.4 \times 5$) (incorrect conversion) is used
	(b)		The ammeter reading increases The (total) resistance (of the circuit) decreases / both lamps have (same) current	2	$\begin{aligned} & 2.1 \\ & 2.2 \end{aligned}$	DO NOT ALLOW the ammeter will (start to) show a reading DO NOT ALLOW the circuit is complete
	(c)	(i)	Diode \checkmark	1	1.1	
		(ii)	Correct symbol for diode \checkmark	1	1.1	ALLOW ECF correct symbol for lamp, LDR or thermistor to match response to (c)(i) ALLOW missing circle in diode ALLOW light emitting diode Example:

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
8 (a)	(i)	Anticlockwise arrow	1	2.1	ALLOW word anticlockwise
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{1 2}$ (per minute) award 2 marks $40 / 20=2$ $6 \times 2=12$ (per minute)	2	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	
(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=\mathbf{6 . 4}(\mathbf{N ~ m})$ award $\mathbf{3}$ marks for the calculation Recall and apply: moment of a force $=$ force \times distance $($ moment $=) 32 \times 0.20$ (moment =) $6.4(\mathrm{~N} \mathrm{~m})$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
10	(a)		More sheets means less light / intensity (for LDR) ORA \checkmark Resistance of LDR increases with less light / intensity ORA \checkmark	2	$\begin{aligned} & 3.2 \mathrm{a} \\ & 3.2 \mathrm{~b} \end{aligned}$	ALLOW more light (intensity) less resistance ALLOW more resistance with more sheets 1 mark max
	(b)		Ammeter connected in series Voltmeter connected across the cell / LDR	2	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	Candidates must have correct symbols for each device and complete circuit IGNORE other extra symbols / minor gaps DO NOT ALLOW continuous line through ammeter or voltmeter IGNORE continuous line through second meter in a correct circuit
	(c)	(i)	Any one from: Use the same light source Keep the distance between the LDR and light source the same \checkmark Keep the same background light	1	3.3a	ALLOW any suggestions that keep the ambient light the same
		(ii)	Any one from: Work in a darkroom Keep the same background light Put a box around the LDR (and light source) Use the same light source Keep the distance between the LDR and light source the same \checkmark	1	3.3b	ALLOW any suggestions that keep the ambient light the same

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

