Oxford Cambridge and RSA

GCSE (9-1)

Physics B (Twenty First Century)

Unit J259F/02: Foundation Tier - Depth in physics
General Certificate of Secondary Education

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

Question			Answer	Marks	AO element	Guidance
1	(a)	(i)	0.2 (seconds) \checkmark	1	2.2	$\pm 0.01 \mathrm{~s}$
		(ii)	0.57 (seconds) \checkmark	1	2.2	$\pm 0.01 \mathrm{~s}$
		(iii)	0.37 (seconds) \checkmark	1	2.1	ECF values from ai and aii
	(b)		Recall: v=s/t Realises that you have to double the distance / half the time \checkmark	2	$\begin{aligned} & 1.2 \\ & 2.1 \end{aligned}$	ALLOW in words
	(c)		His value of time was inaccurate Did not have accurate clock/computer	2	$\begin{aligned} & 3.1 b \\ & 3.2 b \end{aligned}$	ALLOW other valid suggestion ALLOW 'did not have the technology'

Question			Answer	Marks	AO	Guidance
2	(a)		Refraction \checkmark Speed \checkmark Absorption	3	1.1×3	
	(b)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer $=0.3(0)(\mathrm{m} / \mathrm{s})$ award 2 marks $\begin{aligned} & =2.5(\mathrm{~Hz}) \times 0.12(\mathrm{~m}) \checkmark \\ & =0.3(0)(\mathrm{m} / \mathrm{s}) \checkmark \end{aligned}$	2	2.1×2	
		(ii)	Any two from: Shows the waves slowing down / changing speed. Shows the wavelength becoming smaller (entering glass or shallow water ORA). Shows the change in direction (Which) shows refraction Shows that light is a wave (because it does the same thing).	2	3.1a x2	ALLOW AW for changing direction

Question			Answer	Marks	AO element	Guidance
3	(a)		Alternating means changing/swapping direction/AW \checkmark Direct means constant/always the same way/AW \checkmark	2	1.1×2	ALLOW annotated diagram
	(b)	(i)	FIRST CHECK THE ANSWER IN THE ANSWER BOX. If answer $=\mathbf{3 0 0 0 0 0}(\mathrm{A})$ award 3 marks $\begin{aligned} & \text { output current }=\text { input p.d. } \times \text { input current } / \text { output p.d. } \checkmark \\ & \text { Output current }=230000 \times 300 / 230 \\ & =300000 \\ & =(A) \checkmark \end{aligned}$ OR $230000 \times 300(A)=230 \times \text { output current }(A) \checkmark$ $69000000=230 \times \text { output current }$ $\text { output current }=69000000 / 230 \text { (A) } \checkmark$ Output current $=300000$ (A) \checkmark	3	1.2 2.2×2 1.2 2.2 2.2	Give full credit for use of inverse proportion, e.g. 'voltage gets $1000 \times$ smaller, so current gets $100 \times$ bigger'
		(ii)	$\begin{aligned} & \text { Recall: Power }=\text { p.d. } \times \text { current } \checkmark \\ & =23000(\mathrm{~V}) \times 3000(\mathrm{~A})=69000000(\mathrm{~W}) \checkmark \\ & =69(\mathrm{MW})(\text { so }>60 \mathrm{MW}) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	NOT $230000(\mathrm{~V}) \times 300$ (A)
		(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = 6900 award $\mathbf{2}$ marks Number = total output power/10 (kW) $=69000000(\mathrm{~W}) / 10000(\mathrm{~W})=6900 \mathrm{~V}$	2	2.2×2	ECF 3bii

Question		Answer	Marks	AO element	Guidance
	(c)		Energy is dissipated as current heats the power cables \checkmark Any one from: Current is smaller in the power cables \checkmark Smaller current means less heat/smaller energy dissipated \checkmark	$\mathbf{2}$	$\mathbf{1 . 1}$
ALLOW 'energy loss' in place of energy dissipated ALLOW 'power' in place of 'energy' ALLOW example: e.g. for 230 000 V instead of 23000 V current $=300 \mathrm{~A}$ instead of 3000 A					

Question			Answer	Marks	AO element	Guidance
4	(a)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = 40 award 2 marks Number $=1400(\mathrm{MW}) / 35(\mathrm{MW}) \downarrow$ $=40 \checkmark$	2	2.2×2	
		(ii)	Any two from: Does not work at night Days are shorter in winter Less power generated in cloud/rain Early morning/late evening the Sun is very low Panels get dirty / rays blocked by objects (e.g. trees) \checkmark	2	2.1×2	ALLOW 1 max for idea that there is not always enough sunlight ALLOW Sunlight not always directly on them
	(b)		Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Describes some advantages and disadvantages of BOTH solar farms and gas-burning power stations, showing an understanding of non-renewable and renewable energy resources. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	6	$\begin{gathered} \hline 1.1 \times 2 \\ 3.2 b \times 4 \end{gathered}$	A01.1 Demonstrates knowledge and understanding of renewable vs. nonrenewable energy resources For example: - Gas is non - renewable so will run out - Solar is renewable - A renewable energy resource will not run out

Question	Answer	Marks	AO element	Guidance
	Level 2 (3-4 marks) Describes some advantages of BOTH solar farms and gas-burning power stations, showing an understanding of non-renewable and renewable energy resources. OR Describes some disadvantages of BOTH solar farms and gas-burning power stations, showing an understanding of non-renewable and renewable energy resources. OR Describes some advantages and disadvantages of BOTH solar farms and gas-burning power stations. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Describes some advantages and disadvantages of gasburning power stations ONLY. OR Describes some advantages and disadvantages of solar farms ONLY. OR Describes some advantages or disadvantages of BOTH solar farms and gas-burning power stations. OR Shows an understanding of non-renewable and renewable energy resources. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			AO3.2b Draws a conclusion describing advantages and disadvantages For example: Advantages - solar farm - A solar farm can be used for grazing animals - Less pollution produced when generating electricity - solar power stations don't produce CO_{2} (once built) Advantages - gas-burning power station - More power produced than solar farms - Gas is not reliant on weather conditions/light levels Disadvantage - solar farm - maximum solar output is $40 \times$ smaller than gas [ECF part (a)] - Reliant on the weather conditions - Solar panel production is polluting - Looks ugly - Solar farms take up space Disadvantage - gas-burning power station - CO_{2} contributes to global warming - Gas produces CO_{2} - which damages the environment

Question			Answer	Marks	AO element	Guidance
5	(a)	(i)	U has A = 234 \checkmark U has $Z=92$	2	2.2×2	
		(ii)	Alpha particles cannot penetrate a thin sheet of paper \checkmark The aluminium in the case is thicker and denser than thin paper \checkmark	2	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	$1^{\text {st }}$ and $4^{\text {th }}$ boxes
	(b)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = 10 (\%) award 3 marks $\begin{aligned} & =1.6(\mathrm{kWh}) / 16(\mathrm{kWh}) \text { OR } 0.1 \\ & =0.10 \times 100(\%) \checkmark \\ & =10(\%) \checkmark \end{aligned}$	3	$3.1 b$ 1.2×2	ALLOW 1 mark for 90\%
		(ii)	$\begin{aligned} & 18(\mathrm{kWh}) \div 1.6(\mathrm{kWh}) \checkmark \\ & =11.25 \text { (hours) (which is more than } 10 \mathrm{~h} \text {) } \end{aligned}$	2	$\begin{gathered} 2.2 \\ 3.1 a \end{gathered}$	ALLOW $1.6(\mathrm{kWh}) \times 10(\mathrm{~h})=16(\mathrm{kWh})$ Which is less than 18 (h) AW
	(c)		$25(\mathrm{~km} / \mathrm{h}) \times 4(\mathrm{~h})=100(\mathrm{~km}) \checkmark$ Straight diagonal line from $[0,0]$ Stopping at $[100,4]$ horizontal line from $[100,4]$ to $[100,14]$	4	1.2 2.2×3	May be shown by the correct graph ALLOW ECF from mp3

Question			Answer	Marks	AO element	Guidance
6	(a)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = 1.6 (J) award 3 marks $\begin{aligned} & \Delta \text { g.p.e. }=m g h \checkmark \\ & =0.80(\mathrm{~kg}) \times 10(\mathrm{~N} / \mathrm{kg}) \times 0.20(\mathrm{~m}) \checkmark \\ & =1.6(\mathrm{~J}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	
		(ii)	Air resistance is very small. There is not much friction acting on the trolley.	2	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 2.1 \end{gathered}$	$1^{\text {st }}$ and $5^{\text {th }}$ box
		(iii)	$1.3 \mathrm{~m} \checkmark$	1	2.2	3rd box
	(b)	(i)	If trolley has not fallen any distance, there is no potential energy to transfer to kinetic energy.	1	1.1	ALLOW (At the start) trolley has not moved and so KE and distance are both 0 AW
	(b)	(ii)	All three points correctly plotted $\{ \pm 1$ a small division $\}$ Best-fit smooth curve	2	2.2×2	ECF own misplotting
	(c)		More energy, goes further /positive correlation \checkmark Less increase in distance at higher energies	2	3.1a $\times 2$	ALLOW ECF their plotted graph

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
7	(a)	(i)	D \checkmark	1	2.1	
		(ii)	B \checkmark	1	2.1	
		(iii)	D \checkmark	1	2.1	
		(iv)	C	1	2.1	
	(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer = $\mathbf{2 0 0} \mathbf{(k P a)}$ award $\mathbf{2}$ marks $100(\mathrm{kPa}) \times 300\left(\mathrm{~cm}^{3}\right)=30000\left(\mathrm{kPa} \mathrm{cm}{ }^{3}\right) \checkmark$ New P $\times 150\left(\mathrm{~cm}^{3}\right)=30000\left(\mathrm{kPa} \mathrm{cm}{ }^{3}\right)$ New $\mathrm{P}=30000\left(\mathrm{kPa} \mathrm{cm}^{3}\right) / 150 \mathrm{~cm}^{3}=200(\mathrm{kPa}) \checkmark$ OR $100(\mathrm{kPa}) \times 300\left(\mathrm{~cm}^{3}\right)=$ New P $\times 150\left(\mathrm{~cm}^{3}\right) \vee$ New $P=100(\mathrm{kPa}) \times 300\left(\mathrm{~cm}^{3}\right) \div 150\left(\mathrm{~cm}^{3}\right)$ New P = $200(\mathrm{kPa}) \checkmark$	2	1.2 2.1 1.2 2.1	ALLOW e.g 'half V means double P'
	(c)		FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer $=150000(\mathrm{~Pa})$ award 3 marks Pressure $=$ force/area $\begin{aligned} & =300(\mathrm{~N}) / 0.002\left(\mathrm{~m}^{2}\right) \\ & =150000(\mathrm{~Pa})^{\vee} \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	

Question			Answer	Marks	AO element	Guidance
8	(a)	(i)	As the illuminance increases, the change in resistance becomes less and less. ($3^{\text {rd }}$ option)	1	1.2	
	(a)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer is between 14.0 \& $16.0(\mathbf{k} \Omega)$ award $\mathbf{2}$ marks R (at 10 lux) $=20(\mathrm{k} \Omega)$ OR R (at 70 lux) $=\{5 \pm 1\}(\mathrm{k} \Omega) \checkmark$ Second R and $\Delta R=20(k \Omega)-\{5 \pm 1\}(\mathrm{k} \Omega)$ $=14.0-16.0(\mathrm{k} \Omega) \checkmark$	2	2.2×2	ALLOW + or - for ΔR as this is a decrease
	(b)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer= 0.000 20(5)/2.0(5) $\times 10^{-4}(A)$ award 3 marks current $=V / R \checkmark$ $\begin{aligned} & =4.5(\mathrm{~V}) / 22000(\Omega) \checkmark \\ & =0.00020(5) / 2.0(5) \times 10^{-4}(\mathrm{~A}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	IGNORE significant figure errors or rounding errors ALLOW any form of equation for mp 1 and mp 2 Incorrect R loses mp2 ECF own values but penalise for power of ten errors
	(b)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE. If answer $=\mathbf{2 . 0 (5)}(\mathrm{V})$ award 3 marks Unit conversion $10 \mathrm{k}(\Omega)=10000(\Omega)$ $\begin{aligned} & \text { p.d. }=0.00020(5)(\mathrm{A}) \times 10000(\Omega) \\ & =2.0(5)(\mathrm{V}) \checkmark \end{aligned}$ OR $\begin{aligned} \text { p.d. } & =4.5(\mathrm{~V}) \times\left\{R / R_{\text {total }}\right\} \checkmark \\ & =4.5(\mathrm{~V}) \times 10000(\Omega) \div 22000(\Omega) \\ & =2.0(5)(\mathrm{V}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 2.1 \end{aligned}$	ECF from (b)(i)

Question		Answer	Marks	AO element	Guidance
	(iii)	(As illuminance increases) resistance decreases /current increases \checkmark	$\mathbf{2 . 2}$		
	$\mathbf{3}$	$3.1 \mathrm{a} \times \mathbf{2}$	ALLOW potential divider argument for mp2 \& mp3		

Question		Answer	Marks	AO element	Guidance
9	(a)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Correct calculation to check whether the value of SLH is greater than $2300 \mathrm{~J} / \mathrm{g}$ AND specific evaluation / development. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Correct calculation to check whether the value of SLH is greater than $2300 \mathrm{~J} / \mathrm{g}$ OR Identifies at least one shortcoming of Sarah's experiment OR suggests at least one valid improvement. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) May attempt to use data to check statement OR Makes generic suggestion(s) to improve the procedure, e.g. repeat readings, use a more accurate balance. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \hline 2.2 \times 2 \\ 3.1 b \times 2 \\ 3.3 a \times 2 \end{gathered}$	Indicative scientific points may include: AO2.2 Calculation of SLH - $P=3.0 \mathrm{~A} \times 12 \mathrm{~V}=36 \mathrm{~W}$ - $\Delta E=P t=36 \mathrm{~W} \times 150 \mathrm{~s}=5400 \mathrm{~J}$ - $\Delta m=\{185.3 \mathrm{~g}-184.3 \mathrm{~g}\}=1.0 \mathrm{~g}$ - $L=\Delta E / \Delta m=5400 \mathrm{~J} / 1.0 \mathrm{~g}=5400 \mathrm{~J} / \mathrm{g}$ A03.1b Evaluation of experiment - Heat losses constitute the (most) significant shortcomings - Not all of heater in the water - Thermal energy will dissipate through sides and bottom of beaker - Thermal energy will dissipate from the water surface - Relatively low mass of water evaporated AO3.3a Development of experimental procedure - Ensure water level is above top of heater. - Surround beaker sides and bottom with insulating material - Cover top of beaker to limit convection losses (but still allow water vapour to escape) - Use higher powered heater to evaporate more water in the same time - Make sure water is boiling before starting measurements. - Longer time/higher current/voltage to evaporate more water.

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Facsimile: 01223552553

