Oxford Cambridge and RSA

GCSE (9-1)

Physics B (Twenty First Century Science)

J259/01: Breadth in physics (Foundation Tier)
General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
S	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{l}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Answers that can be accepted
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret. AO3.2 Analyse information and ideas to make judgements and draw conclusions. AO3.2a Analyse information and ideas to make judgements. AO3.2b Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

Question			Answer	Marks	AO element	Guidance
1	(a)		The cell, to provide a potential difference AND The wires, to make a complete circuit \checkmark	1	1.1	Both required for one mark, $2^{\text {nd }}$ box ticked AND $4^{\text {th }}$ box ticked. ALLOW other clear methods of indicating answers.
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $2.2(\Omega)$ award 2 marks $\begin{aligned} & 3.3 \div 1.5 \\ & 2.2(\Omega) \checkmark \end{aligned}$	2	2.1×2	
	(c)	(i)	Amaya (The current is the same) everywhere in a loop / in a (series) circuit / either side of a component	2	$\begin{gathered} \hline 3.1 \mathrm{a} \\ 2.1 \end{gathered}$	DO NOT ALLOW the readings on the ammeter are the same. ALLOW the current in a (series) circuit cannot change.
		(ii)	Any one from: use different ammeters (and see if you get the same results) \checkmark swap the ammeters round (and see if you get the same results) test the ammeters in the same circuit (to compare them) \checkmark test the ammeters in a control circuit (one with known current)	1	3.3b	

Question			Answer	Marks	AO element	Guidance
2	(a)	(i)	X-rays have a shorter wavelength than visible light \checkmark	1	1.1	$3^{\text {rd }}$ box ticked. ALLOW other clear methods of indicating answer.
		(ii)	Our eyes can detect only a small range of frequencies \checkmark	1	1.1	Top box ticked. ALLOW other clear methods of indicating answer.
(b)		(i)	$\frac{150000000}{300000}$	1	2.1	Left most calculation. ALLOW other clear methods of indicating answer.
		(ii)	At the same time as visible light \checkmark	1	1.1	$3^{\text {rd }}$ box ticked. ALLOW other clear methods of indicating answer.
		(iii)	Reason: (X-rays and visible light) travel at the same speed (in a vacuum / empty space)	1	1.1	

Question			Answer	Marks	AO element	Guidance
3	(a)		$10^{-10} \mathrm{~m} \checkmark$	1	1.1	$3^{\text {rd }}$ answer circled. ALLOW other clear methods of indicating answer.
	(b)		Any two from: gold foil experiment / alpha particle scattering most particles went straight through (in the gold foil experiment) (some) particles bounced back / reflected (in the gold foil experiment) discovery of electron / subatomic particles	2	1.1×2	DO NOT ALLOW a description of the diagrams. ALLOW a description of the experiment. IGNORE electrons fired at atom
	(c)		The incorrect parts are: (the nucleus) is negative (the nucleus) contains electrons	2	1.1×2	ALLOW corrected versions of the incorrect statements, ie; the nucleus is positive, the nucleus contains neutrons (and protons).
	(d)	(i)	$20+12 \checkmark$	1	1.1	$4^{\text {th }}$ sum circled. ALLOW other clear methods of indicating answer.
		(ii)	$10-6 \checkmark$	1	1.1	$1^{\text {st }}$ sum circled. ALLOW other clear methods of indicating answer.

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
4	(a)		concentric circles around wire \checkmark anticlockwise arrow(s) spacing of field lines increases with distance from wire	3	1.1×3	minimum 2 circles for first marking point, ALLOW answer drawn on Fig 4.1, if nothing on Fig 4.2.
	(b)	(i)	strength (of field) decreases with distance / further from wire	1	1.1	ALLOW (magnetic) force decreases with distance
		(ii)	increase the current / pass the wire through the card more than once \checkmark	1	2.1	DO NOT ALLOW more wire (unless it is clear that the wires are being doubled up). ALLOW more wires. IGNORE bigger wire
	(c)		points to magnetic pole of Earth / Earth has magnetic field / Earth's core is magnetic / AW \checkmark	1	1.1	IGNORE electromagnetism. DO NOT ALLOW gravity

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
5	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{6 9 0} \mathbf{0 0 0} \mathbf{(N)}$) award $\mathbf{3}$ marks Conversion $23000(\mathrm{kPa})=23000000(\mathrm{~Pa}) \downarrow$ $\begin{aligned} & 23000000 \times 0.030 \checkmark \\ & =690000(\mathrm{~N}) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW ECF for incorrect or no conversion, eg, 2 marks for answer of 690.
	(b)	(i)	Any two from: (pressure caused by) particles colliding \checkmark (particles colliding) with walls \checkmark (when the volume increases) particles travel further between collisions or vice versa \checkmark (when the volume increases there are) fewer / less /more likely (frequent) collisions (so lower pressure) or vice versa	2	1.1×2	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{3 4 . 5} \mathbf{(d m}^{3}$) award 2 marks $\begin{aligned} & 23000 \times 15(=345000) \checkmark \\ & (345000 / 10000=) 34.5\left(\mathrm{dm}^{3}\right) \end{aligned}$	2	2.1×2	

Question			Answer	Marks	AO element	Guidance
6	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 10.8 (cm) award 2 marks ```32.5\div3 =10.8(cm)\checkmark (Answer must be to 3 sf to gain the second mark)```	2	2.1×2	ALLOW ecf for second mark, e.g. $32.5 \div 2=16.3$ award 1 mark $32.5 \div 4=8.13$ award 1 mark $32.5 \div 5=6.50$ award 1 mark $32.5 \div 6=5.42$ award 1 mark DO NOT ALLOW 2 s.f. answer for second mark, e.g. $32.5 \div 5=6.5$ award zero marks
	(b)	(i)	(the vibration is) perpendicular / at right angles to the direction of travel / propagation	2	1.1×2	ALLOW particles move up and down. ALLOW vibration/oscillation up and down ALLOW has peaks and troughs.
		(ii)	Any two from: sound waves are longitudinal vibration is parallel (to direction of travel) sound wave can travel through gases / wave on the string can only travel on the string sound wave travels slower than the wave on the string \checkmark	2	1.1×2	ALLOW reference to compressions and rarefactions. ALLOW sound waves can travel through air.

Question		Answer	Marks	AO element	Guidance	
$\mathbf{7}$	(a)		need more than one force /needs two forces \checkmark (Sundip is pulling) at both ends / in opposite directions \checkmark	$\mathbf{2}$	$\mathbf{1 . 1}$	IGNORE reference to gravitational force.
	(b)	(i)	does not return to original shape (when force removed) \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	
		(ii)	Any one from: (force meter) would give different results each time \checkmark (force meter) could only be used once \checkmark (force meter) would give incorrect values \checkmark	$\mathbf{1}$	$\mathbf{3 . 1 b}$	
(c)	(i)	force and extension are proportional / extension goes up in equal steps \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	DO NOT ALLOW correlation, or as force goes up extension goes up.	
	(ii)	3 or 4 (N) \checkmark use of data, e.g. goes up in steps of 2.5 (cm) up (to 3.0 N), spring constant $=0.4$ (N/cm) (to 3.0 N), different steps for higher forces \checkmark	$\mathbf{2}$	$\mathbf{3 . 2 b} \times \mathbf{2}$		

Question			Answer	Marks	AO element	Guidance
8	(a)	(i)	Similarity turbines / generators \checkmark Any one from: Difference wind power uses moving air \checkmark fossil fuels are burnt \checkmark fossil fuels use steam \checkmark wind power uses a kinetic store \checkmark fossil fuels use a chemical store \checkmark	2	1.1×2	IGNORE references to pollution/renewability.
		(ii)	Any two from: nuclear reaction \checkmark fusion reaction \checkmark hydrogen (fuses) to form helium \checkmark mass converted to energy (of radiation) \checkmark	2	1.1×2	
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 62.5(\%) award 3 marks recall efficiency = useful energy transferred / total energy transferred $\begin{aligned} & (150 \div 240) \times 100 \checkmark \\ & =62.5(\%) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	ALLOW 2 s.f. 63(\%) DO NOT ALLOW 0.625(\%), 0.63(\%) unless the \% is crossed out on the answer line.
		(ii)	Any two from: Charger B is more efficient for the same cost \checkmark Charger B is more efficient so it will cost less to run \checkmark Charger B will charge the battery faster / more energy transferred per second \checkmark Charger A will be less hot \checkmark Use of numerical data from table to justify statement.	2	$3.2 \mathrm{a} \times 2$	ALLOW ECF from (c)(i) for comparison of efficiencies.

Question			Answer	Marks	AO element	Guidance
9	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{3 2 0 0 0 0}(\mathbf{J})$ award 3 marks $\begin{aligned} & 90-20=70 \checkmark \\ & 1.1 \times 4200 \times 70=323400(\mathrm{~J}) \checkmark \\ & =320,000(\mathrm{~J}) \text { to } 2 \mathrm{sf} \checkmark \end{aligned}$	3	2.2×3	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2420 (W) award 3 marks recall power $=$ current ${ }^{2} \times$ resistance \checkmark $\begin{aligned} & 11^{2} \times 20 \checkmark \\ & =2420(\mathrm{~W}) \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	
	(c)	(i)	(measure the temperature with a) thermometer \checkmark (measure the time with a) stopclock \checkmark	2	2.2×2	ALLOW timer
		(ii)	Any one from: heat in microwave for the same time \checkmark heat in microwave ovens at the same power_ \checkmark leave to cool for the same time \checkmark same temperature of environment \checkmark same initial temperature \checkmark same mass of heat pack \checkmark	1	3.3a	

Question			Answer	Marks	AO element	Guidance
10	(a)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $80(\mathrm{~J})$ award 3 marks recall kinetic energy $=0.5 \times$ mass \times speed $^{2} \checkmark$ $\begin{aligned} & 0.5 \times 1.6 \times 10^{2} \checkmark \\ & =80(\mathrm{~J}) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 5 (m) award 3 marks $\begin{aligned} & \text { rearrange equation height }=\mathrm{GPE} \div(\text { mass } \times \mathrm{g}) \checkmark \\ & 120 \div(2.4 \times 10) \checkmark \\ & =5(\mathrm{~m}) \checkmark \end{aligned}$	3	$\begin{gathered} 1.2 \\ 2.1 \times 2 \end{gathered}$	
	(b)	(i)	chemical store \checkmark	1	1.1	$1^{\text {st }}$ box ticked. ALLOW other clear methods of indicating answer.
		(ii)	kinetic store \checkmark	1	1.1	$3^{\text {rd }}$ box ticked. ALLOW other clear methods of indicating answer.
		(iii)	Any two from: (impact) speed is high for low heights and/or large heights. at low heights, (rate of) change of speed is high / gradient steeper at high heights, (rate of) change of speed is low / shallow gradient. (impact) speed minimum at height between $0.4-0.6 \mathrm{~m} \checkmark$ minimum speed is between 4 and $5 \mathrm{~m} / \mathrm{s}$. \checkmark data point read correctly from graph \checkmark	1 1	$3.1 \mathrm{a} \times 2$	

Question			Answer	Marks	AO element	Guidance
11	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $6680(\mathrm{~J})$ award 3 marks Select equation: energy to cause a change of state $=$ mass \times specific latent heat Conversion $20 \mathrm{~g}=0.020 \mathrm{~kg}$ $334000 \times 0.020=6680(\mathrm{~J}) \checkmark$	3	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 2.1 \end{aligned}$	ALLOW $6.68 \times 10^{3} / 6700 / 6.7 \times 10^{3}$ If the conversion is missing or incorrect, max 2 marks available.
	(b)		Any two from: (time to melt depends on) rate of (thermal) energy transfer energy is transferred to the ice cube (which depends on) thickness of material / conductivity of material / foil is a good conductor / carpet is an insulator / carpet is thick / foil or paper are thin /AW \checkmark	2	2.1×2	ALLOW the ice is heated/heating Not just heat is transferred to the ice ALLOW some materials are better insulators or conductors than others ALLOW thermal energy is transferred in the least time by aluminium because it is the best conductor (2 marks)
	(c)	(i)	put ice in container and wrap the container in material / AW measure temperature / use a thermometer / put (all equipment) in freezer	2	$3.3 \mathrm{~b} \times 2$	ALLOW AVP e.g. use solid CO_{2} that sublimes rather than melts / wrap the ice-cube in cling film/ use waterproof paper / laminate / cover in a thin layer of plastic
		(ii)	use smaller ice cubes / put the ice cubes on a warm surface / put each ice cube under a lamp \checkmark	1	3.3b	ALLOW put in a warmer environment / break up the ice

Question			Answer	Marks	AO element	Guidance
12	(a)	(i)	arrow perpendicular to surface, upwards and left labelled N	1	2.1	$N^{N} \quad$Perpendicular and parallel by eye.
		(ii)	arrow parallel to surface AND upwards and right labelled F	1	2.1	ALLOW in (a)(ii) one mark for missing or incorrect labels for both parts of the question ALLOW arrows anywhere on diagram
	(b)	(i)	if A exerts a force on B then B exerts a force on A forces are equal and opposite \checkmark	2	1.1×2	ALLOW (an interaction) pair of forces (that are the same type) that act on different objects e.g. book pushes on table, table pushes on book NOT if only one object ALLOW second mark for 'every action has an equal and opposite reaction'
		(ii)	(equal and opposite force) acts on the Earth \checkmark	1	2.1	ALLOW the Earth is attracted to Jamal / there is a force pulling the Earth upwards.

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathbf{1 3}$ | (a) | contamination effect \checkmark
 (because the isotope/source/it) is inside/on the body \checkmark | $\mathbf{2}$ | $\mathbf{1 . 1 \times 2}$ | |
| (b) | (c) | At emits ionising radiation (which mutates DNA / cells) \checkmark
 Any two from:
 (If radium is chosen)
 emits alpha so it is (most) ionising \checkmark
 absorbed by bones so stays in body/not excreted \checkmark
 least penetrating so radiation emitted is absorbed by
 tissue \checkmark
 long half-life so stays in body/stays radioactive for a
 long time \checkmark
 (If technetium is chosen)
 short half-life so lots of radiation in a short time $/$ so
 high dose/exposure \checkmark
 (If plutonium is chosen)
 absorbed by bones so stays in body/not excreted \checkmark
 long half-life so stays in body \checkmark | $\mathbf{1 . 1 \times 1}$ | DO NOT ALLOW 'causes cancer / radiation
 sickness' on its own | |

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

