GCSE (9-1)

Physics A (Gateway)

J249/02: Paper 2 (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{I}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Atatements which are irrelevant
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording
AW	Or reverse argument
ORA	

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a Analyse information and ideas to interpret. AO3.1b Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

| Question | | Answer | Marks | AO
 element | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | A \checkmark | 1 | 1.2 | |
| 2 | | B \checkmark | 1 | 1.1 | |
| 3 | | C \checkmark | 1 | 2.1 | |
| 4 | | D \checkmark | 1 | 2.2 | |
| 5 | | A \checkmark | 1 | 2.2 | |
| 6 | | C \checkmark | 1 | 2.2 | |
| 7 | | D \checkmark | 1 | 1.2 | |
| 8 | | A \checkmark | 1 | 1.1 | |
| 9 | | C \checkmark | 1 | 1.2 | |
| 10 | | B \checkmark | 1 | 1.1 | |
| 11 | | B \checkmark | 1 | 2.1 | |
| 12 | | D \checkmark | 1 | 2.1 | |
| 13 | | C \checkmark | 1 | 2.1 | |
| 14 | | C \checkmark | 1 | 1.1 | |
| 15 | | C \checkmark | 1 | 1.2 | |

Question			Answer	Marks	$\begin{array}{\|c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
16	(a)		Any one from: Similarity Both transverse waves \checkmark Both electromagnetic waves \checkmark Both travel at the same speed/speed of light (in a vacuum) Both can travel through space / vacuum \checkmark Any one from: Difference X-ray has higher frequency / shorter wavelength / ORA \checkmark X-rays have higher energy / ORA \checkmark X-rays are more penetrating / ORA \checkmark	2	2×1.1	DO NOT ALLOW we can see visible light/we cannot see X-rays
	(b)	(i)	86 (\%) ${ }^{\text {r }}$	1	2.2	ALLOW 85-87 \%
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 14 (\%) award 2 marks $\begin{aligned} & 100-86 \checkmark \\ & =14(\%) \checkmark \end{aligned}$	2	2×2.2	ALLOW ECF from (b)(i)
	(c)		Big Bang \checkmark Red shift \checkmark Expanding \checkmark	3	3×1.1	

Question			Answer	Marks	AO element	Guidance
18	(a)	(i)	$27 \checkmark$	1	1.1	
		(ii)	The same number of protons / atomic number / they both have 27 protons Co-60 has 3 more neutrons ORA/ Co-60 has 33 neutrons and Co-57 has 30 neutrons / mass number is different \checkmark	2	2×1.1	ALLOW Co-57 has 27 neutrons 0
	(b)	(i)	Radioactivity is a random process \checkmark	1	1.1	ALLOW background radiation fluctuates
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 209 (counts per minute) award 2 marks $\begin{aligned} & (191+224+212) \div 3 \checkmark \\ & =209 \text { (counts per minute) } \checkmark \end{aligned}$	2	2×1.2	
		(iii)	The count-rate stays the same \checkmark	1	2.1	ALLOW the count-rate goes down slightly DO NOT ALLOW the count-rate goes down
	(c)	(i)	The time it takes the number of undecayed/radioactive nuclei to halve	1	1.1	ALLOW count-rate or activity for number of undecayed nuclei
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=40$ (counts per minute) award 3 marks $\begin{aligned} & 10 y=2 \text { half lives } \checkmark \\ & 160 / 2=80 \text { (counts per minute) } \\ & 80 / 2=40 \text { (counts per minute) } \checkmark \end{aligned}$	3	2×2.1	
	(d)	(i)	So (most of) the radioactivity / gamma rays are absorbed by the lead/do not get to the doctor. So the doctor is not irradiated/to prevent the doctor's cells being damaged.	2	2×1.1	ALLOW will absorb alpha and beta radiation ALLOW to stop the doctor getting cancer

Question			Answer	Marks	AO element	Guidance
18	(d)	(ii)	Iodine-131 Gamma can pass through the body to the detector / alpha cannot pass through the body. Use a short half-life so patient's cells are less damaged. \checkmark	3	$\begin{aligned} & 3.2 \\ & 2.2 \\ & 2.2 \end{aligned}$	ALLOW this mark if Cobalt-60 or lodine-131 is chosen ALLOW this mark if Radon-222 or lodine-131 is chosen. 1
19	(a)	(i)	Any two from: First student drops the ruler and second student catches as quick as possible Measure the distance on the ruler where it was caught \checkmark Use look-up table/equation to find time to travel this distance	2	2×1.2	1
		(ii)	Any one from: To check the precision or repeatability of the readings to find the uncertainty in the measurement to find an average or mean	1	3.3a	
		(iii)	Student B's reaction times will be longer / increases \checkmark	1	3.2a	ALLOW B will be slower
	(b)	(i)	$(9+14)=23(\mathrm{~m})^{\checkmark}$	1	2.2	
		(ii)	Stopping distance at $50 \mathrm{mph}=53 \mathrm{~m}$ Stopping distance is greater than $40 \mathrm{~m} /$ Car hits the barrier	2	$\begin{aligned} & 3.1 \mathrm{a} \\ & 3.2 \mathrm{a} \end{aligned}$	ALLOW 52-54m

Question			Answer	Marks	$\begin{array}{c\|} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
19	(b)	(iii)	Factor: larger mass (of car) Reason: Braking distance is increased \checkmark because deceleration is less / larger KE to dissipate OR Factor: Poor quality brakes / tyres \checkmark Reason: Braking distance is increased \checkmark Less friction / smaller deceleration \checkmark OR Factor: Icy / wet / slippery road \checkmark Reason: Braking distance is increased \checkmark Less friction / smaller deceleration \checkmark OR Factor: Going uphill \checkmark Reason: Braking distance is decreased \checkmark Weight of car increases deceleration \checkmark OR Factor: Going downhill \checkmark Reason: Braking distance is decreased \checkmark Weight of car decreases deceleration \checkmark	3	1.1 2×2.1	DO NOT ALLOW distance for braking/thinking distance DO NOT ALLOW stopping distance

Question			Answer	Marks	AO element	Guidance
19	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=3.25 / 3.3\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award 2 marks $\begin{aligned} & 13 \div 4 \checkmark \\ & =3.3\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	2	2×2.1	ALLOW 3.25 ($\mathrm{m} / \mathrm{s}^{2}$)
		(ii)	Any two from: Yes / No (no mark) (agree with driver) stopping distance is shorter \checkmark Less likely to hit obstacles / safer Attempt to quantify, e.g. $4 \mathrm{~s} / 0.4 \mathrm{~s}=10$ OR (disagree with driver) ($F=m a / s o$) the force (acting on the people in the car) is 10x greater This can lead to injury / 10× more dangerous Other factors involved (so cannot quantify)	2	$2 \times 3.1 b$ 2.1 $2 \times 3.1 b$	1
		(iii)	Seat belt / airbag / crumple zone \checkmark	1	1.1	

20	*		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) States that greater orbital distance goes with a longer time period but that the relationship is not proportional. Attempts to explain orbital motion in terms of gravity. AND Relates data from the graph to at least two named planets. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) States that greater orbital distance goes with a longer time period. AND Relates the curve to different named planets in the solar system. OR Reads data from the graph. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) States that greater orbital distance goes with a longer time period. OR Relates the curve to the properties of at least one planet in the solar system. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.

Question			Answer	Marks	AO eleme	Guidance
21	(c)	(ii)	(Earth wire together with fuse) prevents user from getting electric shock (if there is a fault) Plastic case is an insulator (so earth wire not required) \checkmark	2	$\begin{aligned} & 2 \times \\ & 1.1 \end{aligned}$	ALLOW metal case could cause electric shock if no earth wire / AW ALLOW idea of earth wire carries current to Earth / AW ALLOW prevents projector becoming live / AW ALLOW plastic case is not a conductor / does not conduct electricity/current ALLOW appliance is double insulated
22	(a)		Change the thickness of the cardboard (and repeat) Any 2 from: (Control variable) Same volume of water / same starting temperature of water Measure temperature with thermometer I time with stopwatch Calculate the rate using change in temperature / time Repeat results (and calculate the mean)	3	$\begin{gathered} 3 \times \\ 3.3 a \end{gathered}$	ALLOW use different boxes with different thicknesses / line the box with an insulator ALLOW same beaker / both beakers (don't) have a lid/ same room temperature ALLOW a specified amount of water in the beaker / a specified starting temperature

Question		Answer	Marks		Guidance
22 (b)	(i)	5 or 4 points correctly plotted to within $1 / 2$ small square $\checkmark \checkmark$	2	2×2.2	3 or 2 correctly plotted points gains 1 mark IGNORE 'blobs' more than $1 / 2$ square diameter
	(ii)	Smooth curved line of best fit through most points \checkmark	1	1.2	DO NOT ALLOW a straight line of best fit
	(iii)	Temperature decreases (with time) At a decreasing rate / by a smaller change in temperature for each increase in time \checkmark	2	$2 \times 3.1 \mathrm{a}$	IGNORE non-linear relationship / positive/negative correlation ALLOW inverse proportion for this mark only ALLOW gradient decreases / temperature decreases more quickly at the start (than at the end) ALLOW use of data from the graph to show decreasing rate
	(iv)	Line starts at $90^{\circ} \mathrm{C}$ and decreases but remains above their LOBF \checkmark	1	3.2b	IGNORE shape of the line but no mark for a horizontal line ALLOW $90+/-2{ }^{\circ} \mathrm{C}$
	(v)	Any one from: Repeat (and find a mean) / check reproducibility/repeatability \downarrow Use smaller time intervals Use more precise timer/thermometer \checkmark	1	3.3b	ALLOW any sensible suggestion IGNORE a longer time / use more thicknesses ALLOW use equipment with higher resolution / data logger IGNORE better equipment unless qualified
(c)		Thermal conductivity of metal is higher (so rate of cooling is greater)/ ORA	1	3.2a	ALLOW metal is a (better thermal) conductor / ORA

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

