GCSE MATHEMATICS

New Specimen Papers published June 2015
Paper 3 Higher - Mark Scheme

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent.
eg accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{1}$	10000	B1	

$\mathbf{2}$	$\binom{7}{-5}$	B1	

$\mathbf{3}$	0.667	B1	
$\mathbf{4}$	D	B1	

5	Alternative method 1		
	6.31-3.6(0) or 2.71	M1	
	$\begin{aligned} & \text { their } 2.71 \div 3.6(0)(\times 100) \\ & \text { or } 0.752(7 \ldots) \text { or } 0.753 \end{aligned}$	M1dep	
	75.2(7...) or 75.28 or 75.3	A1	Allow 75 with correct method seen
	Alternative method 2		
	$\begin{aligned} & 6.31 \div 3.6(0)(\times 100) \text { or } \\ & 1.752(7 \ldots) \text { or } 1.753 \text { or } \\ & 175.2(7 \ldots) \text { or } 175.3 \end{aligned}$	M1	
	$\begin{aligned} & 1.752(7 \ldots)-1 \text { or } 1.753-1 \text { or } \\ & 175.2(7 \ldots)-100 \text { or } 175.3-100 \end{aligned}$	M1dep	
	75.2(7...) or 75.28 or 75.3	A1	Allow 75 with correct method seen

Q	Answer	Mark	Comments

| ($9+3 x+x-5+2 x$
 or $6 x+4$
 or $3 x+x-5+2 x$
 or $6 x-5$
 their $(6 x+4)=100$
 or their $6 x-5=91$
 or $6 x=96$
 $x=16$ M1
 $\frac{\text { M1 }}{11}$$\frac{9}{\text { their }(6 x+4)}=\frac{9}{100}$ |
| :---: | :--- | :--- | :--- |

7	One continuous arc, centre A, intersecting $A B$ and $A D$ or Two arcs, each with same radius and centre A, intersecting $A B$ and $A D$	M1	Allow $\pm 2 \mathrm{~mm}$ for radii
	Intersecting arcs with same radius and centres at the intersections with $A B$ and $A D$ and angle bisector drawn	A1	Allow $\pm 2 \mathrm{~mm}$ for radii The radius of these arcs need not be the same as those used for M1
	Arc of radius [5.8, 6.2] cm, centre C, intersecting their angle bisector and P labelled		SC1 Arc of radius [5.8, 6.2] cm, centre C with no angle bisector attempted

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

8(a)	$375.112(1656)$	B1	Condone if correctly rounded to 7 significant figures or better eg 375.1122
$\mathbf{8 (b)}$	20^{2} or 400 or $\sqrt[3]{1000}$ or 5	M1	
	$400-10 \div 5=398$ or $400-2=398$	A1	

$\mathbf{9}$	octagon	B1	

\mathbf{Q}	Answer	Mark	Comments

Alternative method 1

$\angle P C B=180-90-15 \text { or } 75^{\circ}$ or $\angle P C B=90-15$	M1	oe Angle may be seen on diagram
$\begin{aligned} & \angle A B C=\angle P C B=\text { their } 75 \\ & \text { and } \\ & \angle B C D=180-\text { their } 75 \text { or } 105^{\circ} \end{aligned}$	M1	oe Angle may be seen on diagram
$x=105-75=30^{\circ}$	A1	Full method required
Alternative method 2		
$\angle P C B=180-90-15 \text { or } 75^{\circ}$ or $\angle P C B=90-15$	M1	oe Angle may be seen on diagram
$\begin{aligned} & \angle A B C=\angle P C B=\text { their } 75 \\ & \text { and } \\ & \angle A B P=\text { their } 75-15 \text { or } 60^{\circ} \\ & \text { and } \\ & \angle B A C=180-90-\text { their } 60 \end{aligned}$	M1	oe Angles may be seen on diagram
$x=\angle B A C=30^{\circ}$	A1	Full method required

Alternative method 3

$\angle P C B=180-90-15 \text { or } 75^{\circ}$ or $\angle P C B=90-15$	M1	oe Angle may be seen on diagram
$\begin{aligned} & \angle A B C=\angle P C B=\text { their } 75 \\ & \text { and } \\ & \angle B A C=180 \text { - their } 75 \text { - their } 75 \end{aligned}$	M1	oe Angle may be seen on diagram
$x=\angle B A C=30^{\circ}$	A1	Full method required

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

11	100(\%) - 14(\%) or 86(\%) or $1-0.14$ or 0.86	M1	Implied by 87 139(.5)
	$101325 \times 0.86{ }^{4}$	A1	```oe eg 101 325 > 0.86 or }87139(.5 and their }87139(.5)\times0.86\mathrm{ or }74939(.97 and their 74 939(.97) }\times0.8 or 64 448(.3742) and their 64 448(.3742) × 0.86```
	55 425(...)	A1	May be implied by 55000 or 55400 or 55430 or 55426
	55000	B1ft	ft their answer rounded to 2sf

12(a)	Ticks 'False' and states that x could be -4	B1	oe
12(b)	True and $20 n \div 2 n=10$	B1	oe
12(c)	False and y could be between 0 and 1	B1	oe eg False and $y=0.5$

$\mathbf{1 3}$	Cumulative frequency 46 should be 48	B1	oe
	Points should be plotted at end of class intervals	B1	oe

14(a)	1536	B 1	
14(b)	$2^{n+2}+2^{n+1}$	B 1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

15	$6.5-2.3$ or 4.2 and 5 or 85 seen	M1	
	$\sin 5=\frac{6.5-2.3}{A D}$ or $\cos 85=\frac{6.5-2.3}{A D}$ or $\left(\frac{6.5-2.3}{\tan 5}\right)^{2}+(6.5-4.2)^{2}$	M1	оe
	$\begin{aligned} & \frac{6.5-2.3}{\sin 5} \text { or } \frac{6.5-2.3}{\cos 85} \text { or } \\ & \sqrt{\left(\frac{6.5-2.3}{\tan 5}\right)^{2}+(6.5-4.2)^{2}} \end{aligned}$	M1dep	oe
	[48, 48.2]	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

$\frac{5}{6+5+7}$ or $\frac{5}{18}$	M1	oe fraction, decimal or percentage
or $\frac{7}{9+7+8}$ or $\frac{7}{24}$	M1	Attempt to convert both to comparable form with one correct oe
Attempt to convert to any common denominator		
eg $\frac{20}{72}$ and $\frac{21}{72}$ or to decimals eg $0.27(7 \ldots)$ and 0.29 eg 30.28 and 0.29$)$ or to percentages eg 28% and 29%	A1	oe fractions, decimals or percentages
$\frac{20}{72}$ and $\frac{21}{72}$ and Yes		

Alternative method 2

Chooses a number of counters that is a multiple of 18 and 24 eg 72	M 1	
$5 \times \frac{\text { their } 72}{18}$ or 20	M1	
or $7 \times \frac{\text { their } 72}{24}$ or 21	A1	
20 and 21 and Yes	M1	
Alternative method 3	M1	
$35: 42: 49$ and $35: 45: 40$		
$\frac{35}{35+\text { their } 42+\text { their } 49}$ or $\frac{35}{126}$		
or	35	
$\frac{35+\text { their } 45+\text { their } 40}{}$ or $\frac{35}{120}$	A1	
$\frac{35}{126}$ and $\frac{35}{120}$ and Yes		

Q	Answer	Mark	Comments

17	$(3 x+a)(x+b)$ where $a b=8$ or $a+3 b=14$ or $3 x(x+4)+2(x+4)$ or $x(3 x+2)+4(3 x+2)$	M1	
	$(3 x+2)(x+4)$	A1	oe

18	$\begin{aligned} & 16 \times 2 \text { or } 32 \text { or } \\ & 7 \times x \text { or } 7 x \text { or } \\ & 20 \times 12 \text { or } 240 \text { or } \\ & 10 \times 17 \text { or } 170 \text { or } \\ & 16+x+20+10 \text { or } 46+x \end{aligned}$	M1	oe
	$16 \times 2+7 \times x+20 \times 12+10 \times 17$ or $\begin{aligned} & 16 \times 2+7 x+240+170 \text { or } \\ & 442+7 x \end{aligned}$	M1	oe Must be the sum of 4 products Award if correct expression seen, even if in an incorrect equation
	```their (32+7x+240+170)= 8.5 x their (16 + x + 20 + 10) or their (442+7x)= 8.5 }\times\mathrm{ their (46 + x)```	M1	oe equation   ft their sum of at least 3 products, one of which must be $7 \times x$   ft sum of at least 3 frequencies, one of which must be $x$
	their 442 - their $(8.5 \times 46)=$ $8.5 x-7 x$	M1dep	oe equation   dep on $3^{\text {rd }} \mathrm{M} 1$   Expands and rearranges their equation   Allow one sign or expansion error
	34	A1	Answer 34 with no incorrect working gains 5 marks


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


19	$x^{2}+6$ or $(x-3)^{2}$	M1	
	$x^{2}-3 x-3 x+9$	M1	4 terms with 3 correct
	$6 x<3$	M1dep	oe linear inequality   dep on two quadratic expressions   ft their quadratic expressions
	$x<0.5$	A1	oe


20	$\frac{\sin y}{16}=\frac{\sin 34}{10}$	M1	oe
	$\frac{\sin 34}{10} \times 16$ or $[63.47,63.5]$	M1	
	$[116.5,116.53]$	A1	


$\mathbf{Q}$	Answer	Mark	Comments


	Alternative method 1		
	27.5 or 26.5 or 20.5 or 19.5 or 15.5 or 14.5 or 14.35 or 14.25 or 19.25 or 19.15 or 1.55 or 1.45	B1	Any one seen
21	a bound of $27 \div$ a bound of 1.5	M1	Must see the calculation written down $26.5 \leqslant$ a bound of $27 \leqslant 27.5$ but not 27 $1.45 \leqslant \mathrm{a}$ bound of $1.5 \leqslant 1.55$ but not 1.5 eg $127.49 \div 1.45$ eg $226.45 \div 1.54999$
	$26.5 \div 1.55$	M1	Must see the calculation written down $26.5 \div 1.55$ scores B1 M1 M1
	[17.0, 17.1]	A1	Must see method
	Alternative method 2		
	27.5 or 26.5 or 20.5 or 19.5 or 15.5 or 14.5 or 14.35 or 14.25 or 19.25 or 19.15 or 1.55 or 1.45	B1	Any one seen
	$17 \times$ a bound of 1.5	M1	Must see the calculation written down $1.45 \leqslant$ a bound of $1.5 \leqslant 1.55$ but not 1.5 eg $117 \times 1.45$   eg $217 \times 1.54999$
	$17 \times 1.55$	M1	Must see the calculation written down $17 \times 1.55$ scores B1 M1 M1
	26.35 and 26.5	A1	Must see method

## Alternative method 3 on next page

Q	Answer	Mark	Comments


21	Alternative method 3		
	27.5 or 26.5 or 20.5 or 19.5 or 15.5 or 14.5 or 14.35 or 14.25 or 19.25 or 19.15 or 1.55 or 1.45	B1	Any one seen
	a bound of $27 \div 17$	M1	Must see the calculation written down $26.5 \leqslant$ a bound of $27 \leqslant 27.5$ but not 27 eg $127.49 \div 17$ eg $226.45 \div 17$
	$26.5 \div 17$	M1	Must see the calculation written down $26.5 \div 17$ scores B1 M1 M1
	[1.558, 1.559] and 1.55	A1	


22	$\frac{9}{27}$ or $\frac{18}{27}$ or fraction with   denominator 22	M1	oe
	$\frac{9}{27} \times \frac{8}{22}$ or $\frac{72}{594}$ or   $\frac{18}{27} \times \frac{7}{22}$ or $\frac{126}{594}$	oe	
	M1	M1dep   their $\frac{72}{594}+$ their $\frac{126}{594}$ or $\frac{198}{594}$   Clear indication that $\frac{198}{594}$ and $\frac{9}{27}$ are   equivalent fractions	A1


23(a)	C	B 1	
23(b)	Draws tangent at $t=3$	M 1	
	$[3.6,4.4]$	A 1	SC1 correct gradient for their tangent


$\mathbf{Q}$	Answer	Mark	Comments


24	$0.5 \times 20 \times 8 \text { or } 80$   or $30 \times 8 \text { or } 240$   or $0.5 \times(50+30) \times 8 \text { or } 320$	M1	oe   Attempt at any part of the area below the graph up to 50s
	$0.5 \times(8+5) \times 14$ or 91	M1	oe   Attempt at area below the graph for time between 50s and 64s
	their $80+$ their $240+$ their 91 or their 320 + their 91 or 411	M1dep	dep on M1 M1   An attempt at total area for 64 seconds
	411 and Amina	A1	


25(a)	$\begin{aligned} & \overrightarrow{B C}=2 \mathbf{a}-3 \mathbf{b} \text { or } \\ & \overrightarrow{C B}=-2 \mathbf{a}+3 \mathbf{b} \text { or } \\ & \overrightarrow{A M}=\mathbf{a} \text { or } \overrightarrow{M A}=-\mathbf{a} \text { or } \\ & \overrightarrow{B N}=\frac{2}{5} \overrightarrow{B C} \text { or } \overrightarrow{C N}=-\frac{3}{5} \overrightarrow{B C} \end{aligned}$	M1	oe
	$\begin{aligned} & \mathbf{a}+\frac{3}{5}(-2 \mathbf{a}+3 \mathbf{b}) \text { or } \\ & -\mathbf{a}+3 \mathbf{b}+\frac{2}{5}(2 \mathbf{a}-3 \mathbf{b}) \end{aligned}$	M1	oe
	$-\frac{1}{5} \mathbf{a}+\frac{9}{5} \mathbf{b}$	A1	oe eg $-0.2 \mathbf{a}+1.8 \mathbf{b}$ or $\frac{1}{5}(9 \mathbf{b}-\mathbf{a})$   Must collect terms
25(b)	$\overrightarrow{M N}$ is not a multiple of $\overrightarrow{A B}$	B1ft	oe

## AQA

Q	Answer		
Mark	Comments		
26(a)	$-\frac{1}{2}$ or -0.5	B1	
	$-\frac{25}{64}$ or -0.390625	B1ft	ft their $-\frac{1}{2}$
	-0.381966	B1ft	ft their $-\frac{25}{64}$

27
$y=-x^{2}+5 x-2$
B1

28	Alternative method 1		
	$y=2 x$ or ( $x, 2 x$ )	M1	oe
	$x^{2}+(2 x)^{2}=2645$	M1	oe
	$\begin{aligned} & x^{2}=2645 \div 5 \text { or } x^{2}=529 \text { or } \\ & x=23 \end{aligned}$	M1	
	$(23,46)$	A1	
	Alternative method 2		
	$\frac{1}{2} y=x$ or $\left(\frac{1}{2} y, y\right)$	M1	oe
	$\left(\frac{1}{2} y\right)^{2}+y^{2}=2645$	M1	oe
	$\begin{aligned} & y^{2}=2645 \div \frac{5}{4} \text { or } y^{2}=2116 \text { or } \\ & y=46 \end{aligned}$	M1	
	$(23,46)$	A1	

