$A Q A^{E}$

GCSE MATHEMATICS

New Specimen Papers published June 2015
Paper 1 Foundation - Mark Scheme

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
M dep method mark dependent on a previous method mark being	
awarded.	

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.
Questions which do not ask students to show working
As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q Answer
Q
$\mathbf{1}$ 370 Mark Comments $\mathbf{2}$ C B1 $\mathbf{3}$ $\frac{15}{35}$ B1

$\mathbf{4}$	$3 a-6$	B1	
$\mathbf{5} 5$	$\frac{2}{3}$ or $\frac{40}{60}$ or $0 . \dot{6}$	B1	Allow 0.67 or 0.66 or better
	135	B1	

6	Alternative method 1		
	Orders numbers $\begin{array}{llllll} 7.6 & 9.6 & 12.4 & 12.6 & 15.4 & 17.4 \end{array}$	M1	Smallest to largest or largest to smallest
	7.6 and 17.4 and 9.6 and 15.4 and 12.4 and 12.6	A1	Pairs in any order
	Alternative method 2		
	$\begin{aligned} & (9.6+12.6+15.4+7.6+12.4+ \\ & 17.4) \div 3 \text { or } 25 \end{aligned}$ or $\begin{aligned} & (9.6+12.6+15.4+7.6+12.4+ \\ & 17.4) \div 6 \text { or } 12.5 \end{aligned}$	M1	Implied by one correct pair
	7.6 and 17.4 and 9.6 and 15.4 and 12.4 and 12.6	A1	Pairs in any order

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

7	acute-angled and isosceles	B1	

$\mathbf{8}$	Complete, correct build up method or 0.51×400	M1	eg $400 \div 2+400 \div 100$ oe
	204	A1	

9	$\frac{180}{3000}$ or $\frac{18}{300}$ or $1 \mathrm{~kg}=1000 \mathrm{~g}$ seen or implied	B1	oe fraction eg 3000 or 0.18 seen
	$\frac{3}{50}$	B1ft	

10(a)	A and D	B1	
10(b)	No and a number cannot be both odd and even or No and a number cannot be both square and prime or No and a number cannot be twodigit, even and prime	B1	oe Accept eg No and a number cannot be both A and B
10(c)	16 or 36 or 64 and $\mathrm{A}, \mathrm{D}, \mathrm{E}$ or 25 or 49 or 81 and B, D, E or 11 or 13 or 17 or 19 or 23 or 29 or 31 or 37 or 41 or 43 or 47 or 53 or 59 or 61 or 67 or 71 or 73 or 79 or 83 or 89 or 97 and B, C, E	B2	B1 Any of the correct possible numbers (listed for B2) but with incorrect properties or any even square number and A, D or any odd square number and B, D or any prime number > 2 and B, C or 2 and A, C

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

11	Alternative Method 1		
	$£ 2 £ 2,20 p, 20 p, 20 p$ or $£ 2, £ 2,50 p, 5 p, 5 p$ or $£ 2, £ 1, £ 1,50$ p, 10p	M1	
	$\begin{aligned} & £ 1, £ 1,50 \text { p, 10p, 10p } \\ & \text { or } £ 2,20 p, 20 \text { p, 20p, } 10 \text { p } \\ & \text { or } £ 2,50 \text { p, 10p, } 5 \text { p, } 5 \text { p } \end{aligned}$	M1	
	£2, £2, 20p, 20p, 20p, 10p	M1	
	£4.70	A1	Correct money notation
	Alternative Method 2		
	4.60-2.70 or 1.90	M1	oe
	£2 and 10p identified	M1	
	$\begin{aligned} & £ 4.60+10 \text { p } \\ & \text { or } £ 2.70+£ 2 \end{aligned}$	M1	Allow mixed units
	£4.70	A1	Correct money notation
12	$a b$ or -12 and $-3,8$ and -12 seen	B2	B1 for $\left(\frac{b}{a}=\right)-3$ or $(a-b=) 8$ or $(a b=)-12$

13(a)	28	B1	
13(b)	6	B1	

14	The perimeter of R is the same as the perimeter of L	B1	

Q	Answer	Mark	Comments
15	$720 \div 30$ or $0.72 \div 0.03$ or 24	M1	
	their 24×2	M1dep	
	48 and No	A1	

16	Alternative Method 1		
	$24.5 \div 7$ or $3.5(0)$	M1	
	63-24.5 or 38.5	M1	
	their $38.5 \div$ their 3.5	M1	
	11	A1	
	Alternative Method 2		
	$24.5 \div 7$ or $3.5(0)$	M1	
	$63 \div$ their 3.5 or 18	M1	
	their 18-7	M1	
	11	A1	
	Alternative Method 3		
	$63 \div 24.5$ or $\frac{18}{7}$	M1	oe
	$7 \times$ their $\frac{18}{7}$ or 18	M1	
	their 18-7	M1	
	11	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

17(a)	Straight line through $(0,1),(1,2),(2,3),(3,4),(4,5)$ and (5, 6)	B2	B1 Two correct points plotted
17(b)	$x=2$ and $y=3$	B1ft	ft their linear graph from (a)

1	Three different valid criticisms: no key	Friday's drink bar is wrong / Friday should reach $£ 70$	B3
Saturday's bars are the wrong way round /Thursday's and Friday's bars are the wrong way round	B1 foach		

19	$345-96$ or 249	M1	
	$80 \div 10 \times 3$ or 24 their $249 \div$ their 24 or their 24×10 or their 24×11	M1	oe
	11	M1	Condone $345 \div 24$

$\mathbf{2 0 (a)}$	41 or 29 used	M1	
	12	A1	
$\mathbf{2 0}(b)$	59 or 50 used	M1	
	109	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

21(a)	0.0048	B1	
21(b)	0.000012	B1	
21(c)	2.5×10^{6}	B1	

22(a)	mode $=8$	B1	May be implied from answer $\frac{8}{27}$
	$2+3+6+7+9$ or 27	M1	Allow one error or omission if working shown
	$\frac{9}{27}$ or $\frac{1}{3}$	A1ft	oe ft their mode
22(b)	$8-4 \text { or } 4$ or $8-3 \text { or } 5$	M1	
	Range of 3 A is smaller and 4 and 5	A1	SC1 4 to 8 and 3 to 8 seen oe
22(c)	$\frac{29+1}{2}$ or 15 th value identified	M1	
	6	A1	

23	$3 \times 1-1^{3}=3-1$ $=2$ and correct	B1	Condone No, they should be 1 and -2 for B1B1 SC1 $w=-2$
S1 $3 \times(-1)-(-1)^{3}=-3+1$ $=-2$ and incorrect B1			

24	$\pi \times 8^{2}(\div 2)$	M1	oe
	32π	A1	

\mathbf{Q}	Answer	Mark	Comments

25	$\frac{11}{4}(\times) \frac{12}{7}$	$M 1$	Converts both fractions to improper with at least one correct
	$\frac{\text { their } 11 \times \text { their } 12}{\text { their } 4 \times \text { their } 7}$ or $\frac{132}{28}$	oe fraction	
	A1dep		

26	$5 x-3 x>11+2$ or $2 x>13$	M1	
	$x>6.5$	A1	oe SC1 6.5

27	Lists at least three terms from first sequence between 20 and 40	M 1	eg 21, 23, 25, ...
	Lists at least three terms from second sequence between 20 and 40	M 1	eg 20, 23, 26, ..
	2345	A1	SC2 for any two correct with at most one incorrect SCor any one correct with at most two incorrect

\mathbf{Q}	Answer	Mark	Comments

28	Alternative method 1		
	$18 \div(3+2)$ or 3.6	M1	
	their $3.6 \times 3 \times 2.8(0)$ or $30.24(0)$	M1dep	
	their $3.6 \times 2 \times 3.5(0)$ or $25.2(0)$	M1dep	dep on first M1
	55.44	A1	
	Alternative method 2		
	$3 \times 2.8(0)+2 \times 3.5(0)$ or $15.4(0)$	M1	
	$18 \div(3+2)$ or 3.6	M1	
	their $3.6 \times$ their $15.4(0)$	M1dep	dep on M1 M1
	55.44	A1	
	Alternative method 3		
	$3 \times 2.8(0)+2 \times 3.5(0)$ or $15.4(0)$	M1	
	their $15.4(0) \div 5$ or 3.08	M1dep	
	their 3.08×18	M1dep	
	55.44	A1	

29(a)	0.64	B1	
29(b)	$\frac{x}{4}=\cos 50^{\circ}$ or $\frac{x}{4}=\text { their } 0.64$ or $4 \times \text { their } 0.64$	M1	oe their 0.64 from (a)
	2.6	A1ft	oe ft their 0.64 from (a)

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1

$(x+3)^{2}$	M1	oe
$x^{2}+3 x+3 x+9$	A 1	oe
$3 \times(x+3)$	M 1	oe
$x^{2}+3 x+3 x+9+3 x+9+9$ $=x^{2}+9 x+27$	A 1	

Alternative method 2

$(x+6)(x+3)$	M1	oe
$x^{2}+6 x+3 x+18$	A1	oe
their $\left(x^{2}+6 x+3 x+18\right)+3 \times 3$	M1	oe
$x^{2}+6 x+3 x+18+9$ $=x^{2}+9 x+27$	A 1	

Alternative method 3

$(x+3)^{2}$	M1	oe
$x^{2}+3 x+3 x+9$	A1	oe
$3 \times(x+6)$	M1	oe
$x^{2}+3 x+3 x+9+3 x+18$ $=x^{2}+9 x+27$	A1	

Alternative method 4

$(x+6)^{2}$	M1	oe
$x^{2}+6 x+6 x+36$	A1	oe
$3 \times(x+3)$	M1	oe
$x^{2}+6 x+6 x+36-3 x-9$ $=x^{2}+9 x+27$	A1	

