edexcel

Mark Scheme (Results)

June 2016

Pearson Edexcel International GCSE
Mathematics A (4MA0)
Paper 2F
Pearson Edexcel Level 1/Level 2 Certificate Mathematics A (KMAO)
Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4MA0_2F_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths June 2016 - Paper 2F Mark scheme

Apart from Questions 9(b), 13(b), and 19 (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

$\mathbf{3}$ (a)		Cone	1	B1 \quad Accept circular based pyramid	
(b)(i)		Prism	1	B1Accept hexagonal prism	
(b)(ii)		12	1	B1	
(b)(iii)		18	1	B1	
(c)	Eg 20×2 or $2 \times 2 \times 4+2 \times 2 \times 4+2 \times 2 \times 2$ or $6 \times 2 \times 4-2 \times 2 \times 2$ or 8×5			M1For a complete method to find the volume or $6 \times 2 \times 4$ or 48 oe or $(2 \times 2 \times 4)+(2 \times 2)$ or 20 oe	
		40	2	A1	Total 6 marks

4	(a)		$-12,-5,-2,0,1$	1	B1		
	(b)		1	1	B1		
	(c)		-6	1	B1		
	(d)		Oberstdorf	1	B1	Accept 9 or -9	
				-	Total 4 marks		

$\mathbf{5}$ (a)(i)		$(3,1)$	1	B1
(ii)		$(-2,3)$	1	B1
(b)		$y=1$	1	B1
(c)		8	1	B1
				Total 4 marks

$\mathbf{7}$ (a)		96	1	B1
	(b)		10	1
B1	Total 2 marks			

8 (a)		1610	1	B1		Allow any separator or a space between hours and minutes.
(b)		1705 or $505(\mathrm{pm})$	1	B1ft	Ft from (a) Allow 505 or Five past 5	
(c)	$\begin{aligned} & \operatorname{Eg} 1835 \rightarrow 1935 \rightarrow 2015 \\ & \operatorname{Eg} 1835 \rightarrow 1900 \rightarrow 2000 \rightarrow 2015 \end{aligned}$			M1	For an attempt to work out the difference between 1835 and 2015	
					Or for $25+60$ Or for $1.66(66$ or 1 hour 40 m	$\begin{aligned} & +15 \mathrm{oe} \\ & +. . \text {) (hours) } \end{aligned}$ ins
		100	2	A1	ScB1 for 2 hours 40 mins or 160 mins	
						Total 4 marks

9 (a)	$\begin{aligned} & \text { Eg } 135 \times 4 \text { or }(135 \div 90) \times(140+70+60+90) \text { or } \\ & 1.5 \times 360 \text { or } 210+105+90+135 \end{aligned}$	540	2	M1 A1	A correct method to find the total number of students at the college
(b)	Measure $140^{\circ} \pm 2^{\circ}$ $\text { Eg " } 140 " \times \frac{" 540 "}{360} \text { or " } 140 " \times 1.5 \text { or } \frac{135}{90} \times " 140 " \text { oe }$	210	3	B1 M1ft Alft	Measuring angle $\left(140^{\circ} \pm 2^{\circ}\right)$ maybe on diagram. For a complete method Accept 207-213 (Integer value only) unless from incorrect working. Note: $138^{\circ}=207$ students $139^{\circ}=208.5$ (208 or 209 students) $140^{\circ}=210$ students $141^{\circ}=211.5$ (211 or 212 students) $142^{\circ}=213$ students
					Total 5 marks

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& $$
\begin{aligned}
& \text { 0.66(..), } 0.6,0.7,0.625 \\
& \frac{80}{120} \\
& \frac{72}{120}
\end{aligned} \frac{84}{120} \quad \frac{75}{120} .
$$ \& $$
\frac{3}{5}, \frac{5}{8}, \frac{2}{3}, \frac{7}{10}
$$ \& 2 \& M1

A1 \& | For 2 fractions converted to decimals (terminating or to at least 2 dp rounded or truncated) or |
| :--- |
| For 2 fractions converted to percentages (at least 2 sf rounded or truncated)) or |
| For 2 fractions expressed as equivalent fractions with a denominator of 120 or a multiple of 120 or |
| For 3 fractions in correct order. |
| Correct order- can be decimal or percentage or fraction equivalents in correct order. |
| SCB1 for fractions reversed |

\hline \& \& \& \& \& Total 2 marks

\hline
\end{tabular}

12 (a)			22	1	B1	
			Added 3	1	B1	Accept +3 , 3 more, jumped forward by 3 , difference $=3$ oe or $3 n+4$ oe
(c)	(c)		37	1	B1	
(d)			Correct reasoning	1	B1	For a correct reason. For example: $3 n+4=60$ does not have an integer solution or 60 is a multiple of 3 or 60 is in the 3 times table or 58 are 61 are in the sequence or 58 is in the sequence and $58+3$ does not equal 60
						Total 4 mark

(a)	$4 p=12-7$ or $4 p=5$ or $(12-7) \div 4$ (b)	$(8 y-18=) 3 y+9$ $8 y-3 y=9+18$ or $5 y=27$ oe		

$\begin{equation*} 14 \tag{a} \end{equation*}$	0.8×485 or $485-0.2 \times 485$ or $485-\times 97$ " oe	388	3	M2 A1	For a complete method If not M2 then: M1 for 0.2×485 or 97 oe cao
(b)	$\frac{79}{0.2} \text { or } \frac{79}{20} \times 100 \text { or } 3.95 \times 100 \text { or } 79 \times 5 \text { oe }$	395	3	M2 A1	For a complete method If not M2 then: M1 For $20 \%=79$ or $0.2 x=79$ or $\frac{79}{20}$ or 3.95 or $\frac{x}{79}=\frac{100}{20}$ oe cao ScB2 for 316
					Total

$15 \quad \text { (a) (i) }$		12.18019444	2	M1 A1	For 37.9(35) or 3.11(448......) or For 12.1(180...) rounded or truncated to at least 3 significant figures. For 12.180(19444 ...) rounded or truncated to at least 5 significant figures.
(a) (ii)		12.2	1	B1	ft from value with at least 4 sf
(b)		21	1	B1	
(c)		2	2	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	For $64+36$ or 100 or 10^{2}
					Total 6 marks

\(\left.\begin{array}{|l|l|l|l|l|}\hline \mathbf{1 6} (a) \& \& 63 \& 1 \& B1

\hline (b) \& \& \operatorname{Eg}(6-2) \times 180 or 4 \times 180 or 720 oe \& 50 \& 1\end{array}\right]\) B1 | M1 |
| :--- |
| (c) |

$\mathbf{1 7}$ (a)		$14 d e$	1	B1
(b)		m^{7}	1	B1
(c)		c^{8}	1	B1
(d)		a^{15}	1	B1
(e)	$8 x+12+2 x+10$			M1
		$10 x+22$	Any three terms correct out of	
four.				
Allow 2(5x+11)				

$\left.\begin{array}{|c|l|l|l|l|l|l|}\hline \mathbf{1 8} \text { (a) } & & \begin{array}{c}\text { Enlargement } \\ \text { Scale factor 2 } \\ \text { Centre (1, 0) }\end{array} & & \begin{array}{l}\text { B1 } \\ \text { B1 } \\ \text { B1 }\end{array} & \begin{array}{l}\text { For Enlargement } \\ \text { For (Scale factor =) } 2 \\ \text { For (Centre) (1, 0) } \\ \text { NB if more than one }\end{array} \\ \text { transformation mentioned then no } \\ \text { marks. }\end{array}\right]$

\begin{tabular}{|c|c|c|c|c|c|}
\hline 19 \& Eg 2, 2, 140 or 2, 2, 2, 70 or 2, 2, 2, 2, 35 or $2,2,2,7,10$ or $2,2,7,20$ or $2,7,40$ or $2,5,56$ \& $2^{4} \times 5 \times 7$ \& 3 \& M1
A1

A1 \& | For factors that multiply to 560 and include at least 2 prime factors (can be implied from factor tree or repeated division. |
| :--- |
| Dep on M1 |
| 2, 2, 2, 2, 5, 7 (condone inclusion of 1). This can be implied in a factor tree or by repeated division. Dep on M1 |
| NB: Candidates showing no working score M0A0 |

\hline \& \& \& \& \& Total 3 marks

\hline
\end{tabular}

$\mathbf{2 0}$	$\operatorname{Eg}(3 \times 4)+(9 \times 6)+(15 \times 8)+(21 \times 9)+(27 \times 3)$ or $12+54+120+189+81$		M1$f \times x$ for 4 products with x used consistently within interval (including end points $) \&$ intention to add. (dep) for use of all correct half- way values Do not ISW ScB2 for 15.2	

21 (a)		7, (2), -1, (-2), (-1), 2, 7	2	B2	B1 for at least 2 correct
(b)	$\begin{aligned} & \begin{array}{l} (-1,7),(0,2),(1,-1),(2,-2),(3,-1),(4,2), \\ (5,7) \end{array} \end{aligned}$	Correct curve	2	B2	For the correct smooth curve through all 7 points ($\pm \frac{1}{2}$ sq) B1 ft for at least 6 points from their table plotted correctly $\left(\pm \frac{1}{2}\right.$ sq) provided at least B1 scored in (a)
					Total 4 marks

22 (a)	$\begin{aligned} & 13.5^{2}+60^{2} \text { or } 182.25+3600 \text { or } 3782.25 \\ & \sqrt{" 3782.25 "} \text { or awrt } 61.5 \\ & 13.5+60+\sqrt{" 3782.25 "} \text { or } 13.5+60+61.5 \end{aligned}$	135	4	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For squaring and adding (Dep) for square root Dep Cao NB : A0 if 61.5 is rounded from an inexact value (eg 61.505...)
	Alternative method - using Trigonometry $\operatorname{Eg} A=77.3(196 \ldots)$ and $\sin " 77.3 "=\frac{60}{A C}$ $(A C=) \frac{60}{\sin " 77.3^{3}}$ or awrt 61.5 $13.5+60+\frac{60}{\sin 777.3^{\prime \prime}} \text { or } 13.5+60+61.5$	135	4	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	For finding a correct angle AND a correct trig statement (Dep) For an expression for $A C$ Dep cao NB : A0 if 61.5 is rounded from an inexact value (eg 61.505...)
(b)		13.45	1	B1	
					Total 5 marks

