Mark Scheme (Results)

January 2014

Pearson Edexcel International GCSE Mathematics A (4MA0/2F) Paper 2F

Pearson Edexcel Certificate Mathematics A (KMA0/2F)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code UG037776 All the material in this publication is copyright © Pearson Education Ltd 2014 **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission
- o awrt answers which round to

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct. It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working	Answer	Mark	Notes
Apart from ques	tions 12(c) and 13 (where the mark scheme stat	es otherwise) the correct answe	r, unless cl	early obtained from an incorrect method, should be taken to
imply a correct i	method.			
1. (i)		11	1	B1
(ii)		12	1	B1
(iii)		4	1	B1
(iv)		10	1	B1
				Total 4 marks
2. (i)		40	1	B1
(ii)		(0).4	1	B1ft (if $0 < \% < 100$) ie allow ft if their % from (i) is
(11)		(0).1	1	between 0 and 100
				Accept leading or trailing zeros.
				Total 2 marks
3. (a)		1.3	1	B1
(b)		5.2	1	B1
(c)		arrow at 4 th mark from 0	1	B1
(d)		400	1	B1
				Total 4 marks
4. (a)		Thursday	1	B1
(b) (i)		20	1	B1 Positive integers only.
(b) (ii)		80	1	B1 ft from (b) (i) i.e 4 x "20" Positive integers only.
(b) (iii)		90	1	B1 ft from (b) (i) i.e 4.5 x "20" Positive integers only.
(c)		35	1	B1
(d)	65/100			M1 oe
		13/20	2	A1
				Total 7 marks

5. (i)	kilometres	1	Accept km.
(ii)	m^2	1	Accept sq metres, square metres, metres ²
(iii)	ml	1	Accept millilitres, cm ³ , centimetres ³ , cubic cm(s),
			cubic centimetres.
			Total 3 marks

6. (i)		R marked at 0.5	1	B1
(ii)	B marked	d between 1cm & 3cm from 0	1	B1
(iii)		G marked at 0	1	B1
				Total 3 mark

7. (a)		Meribel	1	B1 accept misspellings if meaning is clear
(b)	(-5) - (-8)			M1 M1 for selecting –8
		3	2	A1 accept –3
(c) (i)	(-2) + (-14) oe			M1
		-16	2	A1 cao
(c) (ii)		10	1	B1 Accept 14
				Total 6 marks

8. (a)	$3 + (4 \times 2)$ oe			M1	Accept $3 + 4 \times 2$
		11	2	A1	14 with no working = $M1A0$
(b)	$(35-3) \div 2$			M1	Accept $35 - 3 \div 2$
		16	2	A1	33.5 with no working = $M1A0$
(c)	``x'' + 8 = 2``x'' + 3			M1	"x" + 8 & 2"x" + 3 seen
					or correct table of costs for Budget and Economy
					taxis to include the costs for 5 km.
					km B E
					1 5 9
					2 7 10
					3 9 11
					4 11 12
					5 13 13
		5	2	A1	
					Total 6 marks

9. (a)	9 to 9.1	1	B1
(b)	11.8	1	B1
(c)	1.4	1	B1
			Total 3 marks

10. (a) (i)		80	1	B1
(a) (ii)		<u>angles</u> at a <u>point</u> = 360 degrees	1	B1 (indep) Accept " <u>angles</u> at a <u>centre</u> = 360 degrees".
				" <u>angles</u> in a <u>complete / full turn</u> = <u>360</u> degrees".
				"angles in one revolution = 360 degrees".
				"angles in a pie chart = 360 degrees"
				any numerical explanation involving 360
(b)	140 / 50 x 90 oe			M2 i.e. one complete full correct method.
				If not M2 then M1 for $140 \div 50 (= 2.8)$
				or 50 ÷140 (= 0.357)
				or 90 ÷ 50 (= 1.8)
				or 50 ÷ 90 (= 0.55)

PMT

		252	3	A1 cao
				Total 5 marks
11. (i)		60	1	B1 Look on diagram if no answer on answer line.
11. (ii)	(BCD =) "60" + 52 (= 112°) (CBD or BDC =) (180 - "112") ÷ 2 (= 34°) (DBC =) "60" - "34"	26	3	M1ft Their ft from angle x. Can be marked on diagram. M1ft (Dep) Dependent on previous M1 Their $x -$ "CBD" A1 cao
				Total 4 marks

				Total 3 marks
		0.5 oe	3	A1 Dependent on at least M1
	18y = 39 - 30 or $3y = 6.5 - 5$	0.5	2	M1
13.	18y + 30 = 39 or $3y + 5 = 6.5$			M1 M1 for correct expansion $\{18y + 30\}$
r				
				Total 6 marks
				12a
				A1 for $\frac{2a}{a}$ (dep on M1) $a = a$ positive integer
	12a 12a 12a			M1 for $\frac{11a}{12a}$, $\frac{5a}{12a}$
(c)	$\frac{11a}{9a} = \frac{2a}{2a}$		2	M1 for $\frac{11a}{3}$, $\frac{9a}{3}$
(b)	11- 0- 2-	1/4	1	B1
				(at least 3 dp rounded or truncated).
				• 2 fractions correctly converted to decimals or %'s
				If not B2 then B1 for
			3	 or all 5 numbers in correct descending order.
				• or 3/5 & 5/8 & 2/3 correctly converted to decimals or %'s (at least 3 dp rounded or truncated)
				• 3 numbers in a correct consecutive sequence $2 \sqrt{5} \frac{8}{5} \frac{5}{8} \frac{5}{8} \frac{2}{3} \frac{2}{3}$ as a sequence of the desired by the sequence of the sequence
				If not B3 then award B2 for
12. (a)		3/5 5/8 65% 0.66 2/3		B3 Accept 0.6, 0.625, 0.65, 0.66, 0.66 rec

14. (a)		6	1	B1
(b)		8	1	B1
(c)	$0.5 \times (11 + 7) \times 10$			M1 M1 for $(0.5 \times 2 \times 10) + (7 \times 10) + (0.5 \times 2 \times 10)$
		90	2	Al
(d)	"90" x 12			M1 ft Their area in (c) x 12
		1080	2	A1 ft
				Total 6 marks

15. (a)	30 ÷ 2 (=15) or 15.5			M1	or clear attempt to find 15^{th} and 16^{th} values.
		2	2	A1	-
(b)	(0x2) + 1x10 + 2x7 + 3x6 + 4x3 + 5x2			M1	M1 for 5 correct products stated or evaluated.
	"64"÷30			M1	Dependent on first M1. Sum of the products / 30
		2.13 rec	3	A1	Accept 2.1 or better with no working. Accept 2 if both M marks awarded.
					Total 5 marks

16. (a)	x = 6 or	e 1	B1 Accept $x - 6 = 0$
(b)	Shape P in correct position	1	B2 Vertices at (8,2) (8,4) (9,4) (9,3) (11,4) & (11,2)
		2	If not B2 then: • B1 for correct reflection in line $x = k$ where $k \neq 6$ • or at least 2 vertices in correct position.
(c)	rotation	1	B1
	90° clockwise or –90		B1 accept 270° or 270° anticlockwise.
	(centre) (0,0) or O or origin	n 3	B1 condone lack of brackets around 0,0
			Award no marks if multiple transformations.
			Total 6 marks

17. (a)	k^5 1	l]	B1
(b)	14t - 6 1	1]	B1 Mark response on answer line or final statement ir
			body of script, do not isw.
(c) (i)	8y + 24 - 6y + 21	1	M1 M1 for 3 terms with correct signs or 4 terms
	2	2	without signs.
	2y + 45	1	A1 Mark response on answer line or final statement
			in body of script, do not isw.
(c) (ii)	$x^2 - 6x - 4x + 24$	1	M1 M1 for 3 terms with correct signs
			or 4 terms without signs.
	$x^2 - 10x + 24$ 22	2	A1 Mark response on answer line or final statement
			in body of script, do not isw.
(d)		1	M1 or v^7 / v or $v^4 \times v^2$ or v^{11} / v^5
	v^6 2	2	A1
		r	Total 8 marks

18. (a)	840 : 40 oe or 840 ÷ 40 oe or 1 : 21			M1
		21	2	A1 Accept 21 : 1
(b)	105 ÷ 3 x 2			M1 M1 for $105 \div 3 (=35)$
		70	2	A1
(c)	$(105 \div \{4+3\}) \times 3$			M1 M1 for $105 \div (4+3) (=15)$
		45	2	A1
				Total 6 marks

19.	$3.2 \times 3.2 (= 10.24)$			M1	Area of square.
	$\pi \times 5^2$ (= 78.5) { $\pi = 3.14$ or better}			M1	Area of circle, accept awrt $78.5 \rightarrow 78.6$ incl.
	$\pi \times 5^2 - 3.2 \times 3.2$			M1	Intention to subtract areas from correct methods.
		68.3	4	A1	Accept awrt 68.3 or 68.4
				Total	4 marks

20.	Fully correct factor tree or repeated division to reach prime factors (condone 1's) or 3, 5, 5, 11 or 3 x 5 x 5 x 11 x 1			M2 factors must multiply to 825 If not M2 then award M1 for correct but incomplete factor
		3 x 5 x 5 x 11	3	tree/ division ladder which includes 2 different primes. (e.g. $25 \times 3 \times 11$) A1 cao Accept $3 \times 5^2 \times 11$ and dots in place of x signs
				Total 3 marks

21. (a) (i)	6, 12	1	B
(a) (ii)	2, 3, 5, 6, 7, 9, 11, 12	1	B1 Withhold mark if any numbers repeated.
(b)	No		B1 Dependent on "No" box being ticked.
		1	
	Universal set has only numbers less than 13		(idea that 14 does not belong to \mathcal{E}).
			Total 3 marks

22.	$4 \times 2.6 (= 10.4) (4 \times 2.6 - 5) \div 3$			M1or 5.4 seen.M1Correct full calculation which would lead to correct answer.
		1.8	3	Alcao
	Alternative solution: Any 4 numbers (including 5) that have a total 10.4 or any 3 numbers that have a total of 5.4 (Sum of their 3 numbers) ÷ 3		3	M1 M1 Correct full calculation which would lead to correct answer.
		1.8		A1
				Total 3 marks

PMT

TOTAL FOR PAPER: 100 MARKS			

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE