...day June 20XX - Morning/Afternoon
GCSE (9-1) Chemistry B (Twenty First Century Science)
J258/03 Breadth in chemistry (Higher Tier)

SAMPLE MARK SCHEME

MAXIMUM MARK
90

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: scoris assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this component. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
3. Log-in to scoris and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50\% Batch 1 and 100\% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.
5. Work crossed out:
a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- if there is nothing written at all in the answer space
- OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question).
8. The scoris comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.
If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciate
10. Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Alror carried forward
AW	Or reverse argument
ORA	

11. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve
experimental procedures.	
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3.3b	Analyse information and ideas to improve experimental procedures.

Question		Answer	Marks	AO element	Guidance
1	(a)	water vapour condensed/turned into a liquid/became oceans because the Earth cooled/surface temperature fell	2	2.1	
	(b)	carbon dioxide percentage decreases plants use carbon dioxide for photosynthesis/to make glucose	2	$\begin{array}{r} 2.1 \\ \\ 1.1 \\ \hline \end{array}$	
2	(a)	zinc is recovered at the end of the process/ a way of making zinc from waste	1	$3.2 \mathrm{a}$	
	(b)	zinc ions are toxic if they enter drinking water/water supplies \checkmark risk is reduced if zinc ions are stored in plants \checkmark	2	3.2a	
	(c)	any two from: larger plants therefore take up more zinc ions \checkmark more plants grow per m^{2} therefore absorb more zinc ions per $\mathrm{m}^{2} \checkmark$ plants grow more quickly therefore more zinc ions can be removed in a shorter time	2	3.1b	
	(d)	find out amount/ concentration of zinc ions in cress \checkmark find out tolerance of sheep for zinc ions / whether zinc ions get into wool/meat	2	3.3a	
	(e)	A contains zinc (ions) \checkmark B contains copper (ions) \checkmark C does not contain any (identifyable) metal ions \checkmark	3	3.2b	
3	(a)	(blue) Litmus paper goes red then white / red then bleaches	2	1.1	
	(b)	water evaporates (from sea water) by the heat of the sun \checkmark water condenses (on the sides of the dome) and collects in the trough	2	1.1	

Question			Answer	Marks	AO element	Guidance
4	(a)		solid \checkmark	1	2.1	
	(b)		covalent \checkmark simple structure / single molecules	2	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	
	(c)		alkanes \checkmark	1	1.1	
5	(a)		hydrogen needs more energy to produce/ ora hydrogen only produces water (which is not a pollutant) / does not produce carbon dioxide / methane produces carbon dioxide methane gives out more energy (per mole)	3	3.1b 2.1 3.1b	
	(b)	(i)	shows products lower than reactants and energy change greater than for hydrogen		2.2	
		(ii)	$\frac{-890}{-286} \approx 3$ therefore $3 x$ as much energy produced so energy change on diagram $3 x$ as large	1	3.1b	DO NOT ALLOW just 'more energy produced' without calculation

Question		Answer	Marks	AO element	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 3 award 2 marks $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{C} \tau$ $\left[\mathrm{H}^{+}\right]=0.001$ moles. $=1 \times 10^{-3}$ moles \checkmark $\mathrm{pH}=3 \checkmark$	$\mathbf{2}$	$\mathbf{2 . 1}$		

Question			Answer	Marks	AO element	Guidance
9	(a)		FIRST CHECK THE ANSWER ON THE ANSWER LINE f answer = 11 (g) award 2 marks percentage gold $=45 \% /$ reads 45% from graph other elements $=55 \% \checkmark$ $\frac{55}{100} \times 20=11(\mathrm{~g})$	2	2.2	
	(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE f answer = 18 (carat) award 3 marks mass $=$ number of moles \times RAM or gives correct numbers $=197 \times 0.19$ $=37.43 \checkmark$ $\% \text { of gold }=\frac{37.43}{50} \times 100=74.86 \%=18 \text { carat } \checkmark$	3	2.2	
	(c)		any two from: group 1 metal only form ion with +1 charge whereas transition metals form ions with variable charges group 1 metals produce white compounds whereas transition metals produce coloured compounds \checkmark transition metals act as catalysts whereas group 1 metals do not \checkmark	2	1.1	IGNORE comments on density/melting point

Question		Answer	Marks	AO element	Guidance
10	(a)	similarities: - both covalently bonded \checkmark - both giant structures one difference from: - silicon dioxide contains two elements but diamond only contains one (carbon) \checkmark - all carbon atoms form four bonds in diamond but only silicon atoms form four bonds in silicon dioxide \checkmark	3	1.1	IGNORE melting points/boiling points/electrical conductivity ALLOW both are giant covalent lattices/structures for 2 marks
	(b)	property Conducts electricity. High melting point. Struanation Structure cart con move Sland and soft. Strong giant structure.	2	1.1	All three correct $=(2)$ One or two correct =(1)

Question			Answer	Marks	AO element	Guidance
11			(no because) energy of disposal is very small / only about $10 \mathrm{MJ} /$ does not make a big difference total energy is about $500 \mathrm{MJ} /$ energy cost of manufacture is about 450 MJ	2	3.2b	
12	(a)		carbon dioxide turns lime water milky / cloudy	2	1.1	
	(b)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 0.0202 award 3 marks calculates formula mass of $\mathrm{Ca}(\mathrm{OH})_{2}=74.1(\mathrm{~g})$ $1.5 / 74.1=0.0202(42 \ldots)$ gives answer to 3 sig figs	3	2.2	
	(b)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 0.09696 award 3 marks $\begin{aligned} & 200 \mathrm{~cm}^{3}=0.2 \mathrm{dm}^{3} \checkmark \\ & 0.0202 \times 0.2=0.00404 \\ & \text { volume of } \mathrm{SO}_{2}(1.1 \text { ratio })=0.00404 \times 24 \\ & =0.09696\left(\mathrm{dm}^{3}\right) \checkmark \end{aligned}$	3	2.2	ALLOW answers to significant figures or more correctly rounded ALLOW 0.0971(65...) calculator value carried forward from 12(b)(i) ECF

Question			Answer	Marks	AO element	Guidance
13	(a)		increasing the pressure increases the yield \checkmark increasing the temperature decreases the yield \checkmark using a catalyst has no effect on yield \checkmark	3	1.1	
	(b)		larger scale/ larger vessels reactant / products continuously added/ removed/ continuous process conditions used to compromise between rate and yield/ high temperature to increase rate but reduces yield \checkmark	3	1.1	
	(c)		phosphorous \checkmark potassium	2	1.1	
14	(a)	(i)	A \checkmark	1	1.2	
		(ii)	D \checkmark	1	1.2	
		(iii)	B \checkmark	1	1.1	
	(b)		higher surface area to volume ratio higher rate of collisions per unit time	2	1.1	

Question		Answer	Marks	AO element	Guidance
15	(a)	FIRST CHECK ANSWER ON ANSWER LINE if answer $=1.2625 \mathrm{~g}$ award 2 marks mass of vinegar in $25 \mathrm{~cm}^{3}$ $=25 \times 1.01 \mathrm{~g}=25.25$ $\begin{aligned} \text { mass of ethanoic acid } & =\frac{5 \times 25.25}{100} \\ & =1.2625(\mathrm{~g}) \end{aligned}$	2	2.2	ALLOW answer of 1.26 to 1.3 (g)
	(b)	FIRST CHECK ANSWER ON ANSWER LINE if answer $=21 \mathrm{~cm}^{3}$ award 3 marks number of moles of ethanoic acid in $25.0 \mathrm{~cm}^{3}=$ $\frac{1.2625}{60}=0.021$ ratio 1:1 0.021 moles of NaOH required $1($ conc of NaOH$)=\frac{0.021}{\text { volume }}$ volume of $\mathrm{NaOH}=0.021 \mathrm{dm}^{3}$ $=21\left(\mathrm{~cm}^{3}\right)^{\vee}$	3	2.2	ALLOW ECF from 15(a)

