GCSE (9-1)

Chemisty B (Twenty First Century Science)

J258/03: Breadth in Chemistry (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations available in RM Assessor

Annotation	Meaning
Correct response	
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

1. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
\boldsymbol{l}	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Words which are not essential to gain credit
()	Underlined words must be present in answer to score a mark
ECF	Alternative wording carried forward
AW	Or reverse argument
ORA	

2. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
AO3b	Analyse information and ideas to improve experimental procedures.

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
1	(a)		An acid is reacting with an alkali (to form a salt plus water) / AW \checkmark	1	1.2	ALLOW the reaction between acid and a base
	(b)	(i)	an indicator changes colour \checkmark	2	1.2	ALLOW named acid-base indicator IGNORE details of any quoted colour change
		(ii)	Take readings at eye level / take readings from (bottom of) meniscus / make sure no air in burette / add (the NaOH) drop by drop \checkmark	1	3.3b	ALLOW AW for any of the points ALLOW repeat and look for a similar value ;
	(c)	(i)	$(25.80-0.90)=24.9(0) \checkmark$	1	2.2	
		(ii)	24.95 not used/is an outlier $\text { Mean }=(24.55+24.65=24.6) \div 3=24.6(0) \checkmark$	2	$\begin{gathered} 3.2 \mathrm{a} \\ 1.2 \end{gathered}$	ALLOW Mean $=(24.55+24.65) / 2=24.6(0)$ ALLOW 1 mark for correct calculation of a mean using all 4 values ($=24.7$ / 24.6875)
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0037$ or $3.7 \times 1 \mathbf{1 0}^{-\mathbf{3}} \mathbf{(g)}$ award 4 marks Rearrange to mass of acid $=0.0908 \div$ volume of acid $\begin{aligned} & =0.0908 \div 24.6 \checkmark \\ & =0.00369 \ldots(\mathrm{~g})^{\checkmark} \\ & =0.0037 \text { or } 3.7 \times 10^{-3}(\mathrm{~g})(2 \mathrm{sf}) \checkmark \end{aligned}$	4	1.2 2×2.2 1.2	ALLOW rearrangement mark if it is clear that 0.0908 is being divided by a volume, even if volume is incorrect. ALLOW ECF if incorrect volume is calculated in (ii) and used in (iii) ALLOW sf mark on incorrect calculation

Question		Answer	Marks $\begin{array}{c}\text { AO } \\ \text { element }\end{array}$	Guidance				
$\mathbf{2}$	(a)	(i)	When the fizzing stops \checkmark	$\mathbf{1}$	$\mathbf{3 . 3 a}$			
	(ii)	$\begin{array}{l}\text { (broken-up tablet) } \\ \text { greater surface area (of solid) (AW) } \checkmark \\ \text { more solid particles can react (in the same time) / } \\ \text { more (successful / frequent) collisions } \checkmark\end{array}$	$\mathbf{1 . 1}$					
	(b)	$\begin{array}{ll}\text { Particles gain activation energy (AW) / frequency of } \\ \text { collisions is greater / more successful collisions } \checkmark\end{array}$	$\mathbf{1}$	$\mathbf{1 . 1}$				
	(c)	(i)	$\begin{array}{l}\text { (the fizz means) a gas is being given off/made / carbon } \\ \text { dioxide is being given off/made } \checkmark\end{array}$	$\mathbf{1}$	$\mathbf{2 . 2}$	$\mathbf{1}$		
	(ii)	$\begin{array}{l}\text { Gradient/slope decreasing } \checkmark \\ \text { (iii) }\end{array}$	$\begin{array}{l}\text { (Rate of reaction decreases as): } \\ \text { number of (reactant) particles decreases / particles } \\ \text { further apart } \checkmark\end{array}$	$\mathbf{1}$	$\mathbf{2 . 2}$	$\begin{array}{l}\text { ALLOW idea that the curve is less steep (as time } \\ \text { increases) }\end{array}$		
IGNORE time increases and mass decreases							$]$	ALLOW reactants/tablet/water used up
:---								
IGNORE particles have less energy								

Question			Answer	Marks	AO	Guidance
3	(a)		Ring around $\mathrm{C}=\mathrm{C} \checkmark$	1	2.1	ALLOW carbon atoms in the ring DO NOT ALLOW hydrogen atoms in the ring.
	(b)		$2.4 \times 10^{24} \checkmark$	1	2.2	
	(c)	(i)	bromine \checkmark	1	1.2	IGNORE any state DO NOT ALLOW bromide
		(ii)		1	1.2	

Question		Answer	Marks	AO element	Guidance	
$\mathbf{6}$	(a)	(Jane wrong) (nail X will rust because) air/oxygen is present (dissolved in the water) \checkmark (Ben correct) (nail Y will not rust because) zinc is more reactive than iron \checkmark	$\mathbf{2}$	$\mathbf{3 . 1 b}$		
	(b)	(i)	Fe \checkmark	$\mathbf{1}$	$\mathbf{3 . 2 b}$	ALLOW idea that zinc is a sacrificial metal IGNORE idea that zinc stops rusting because it is wrapped around the iron alone
		(ii)	It (iron) loses electrons \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$	ALLOW oxygen is gained
	(c)	Iron(III) hydroxide \checkmark	$\mathbf{1}$	$\mathbf{1 . 1}$		

Question		Answer	Marks	AO element	Guidance		
$\mathbf{7}$	(a)	(i)	$\mathrm{CH}_{2} \checkmark$ $\mathbf{2}$		(ii)		$\mathbf{2}$

Question		Answer		Marks	AO element	Guidance $\mathbf{8}$ (a)

Question			Answer	Marks	AO	Guidance
9	(a)		Rate of forward reaction = rate of back reaction (AW) \checkmark	1	1.2	ALLOW 'they are the same'
	(b)	(i)	Temperature $=350{ }^{\circ} \mathrm{C}$ and Pressure $=1.5(\mathrm{MPa})^{\checkmark}$	1	2.2	ALLOW pressure between 1.3 and 1.6 MPa
		(ii)	Reaction is slow / rate of reaction low \checkmark	1	2.2	
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 68 (tonnes) award $\mathbf{3}$ marks RFM of $\mathrm{NH}_{3}=14+3=17 \checkmark$ Shows mole ratio is 3:2 OR correctly converts g to tonnes Mass of $\mathrm{NH}_{3}=17 \times 2 / 3 \times\left(6 \times 10^{6}\right)=68 \times 10^{6} \mathrm{~g}=68$ tonnes	3	2.2	ALLOW ECF from incorrect RFM for max 2
	(c)		filter \checkmark wash (with water) (and dry) \checkmark	2	1.2	
	(d)		(Compound fertilisers) contain other elements / K / P (that act as fertilisers) \checkmark	1	2.1	

Question			Answer	Marks	AO	Guidance
10	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 5.1 (g) award 3 marks Shows in working ($1 \div 6.9$) OR 71 and 13.8 OR 35.5 and $\begin{aligned} & 6.9 ; \checkmark \\ & (71 / 13.8 \text { OR } 35.5 / 6.9=5.14492754 \\ & =5.1(\mathrm{~g})(1 \mathrm{dp}) \checkmark \end{aligned}$	3	$\begin{gathered} 2.2 \times 2 \\ 1.2 \end{gathered}$	ALLOW $A_{\mathrm{r}} \mathrm{Li}=7$ ALLOW (2 marks): 71/6.9 = 10.3 ALLOW (1) for incorrect answer to 1 dp
	(b)		$2 \mathrm{Li}+2 \mathrm{H}_{2} \mathrm{O} \text {---> } 2 \mathrm{LiOH}+\mathrm{H}_{2}$ correct species 1 mark for balanced equation \checkmark	2	1.2	
	(c)		cathode: lithium (metal) anode: chlorine (gas) \checkmark	2	1.2	ALLOW (1) for correct products in reverse order. DO NOT ALLOW 'chloride' IGNORE formulae
	(d)	(i)	Add chlorine to a (solution of a metal) bromide / AW \checkmark Brown colour seen	2	$\begin{aligned} & \hline 2.2 \\ & 1.2 \end{aligned}$	ALLOW any named metal bromide
		(ii)	Avoid inhalation / ventilation / work in fume cupboard \checkmark Chlorine is toxic / poisonous / harmful / irritant (gas)	2	2.2	

Question			Answer	Marks	AO	Guidance
11	(a)		(positive/metal) ions and electrons have strong electrostatic forces / opposite charges idea / positive and negative attract	2	1.1	
(b)			They both conduct electricity \checkmark They both form cations	2	1.1	
	(c)	(i)	amount of reactant (atoms) used to make (useful) product I amount of wasted reactant (atoms) (AW) \checkmark	1	1.1	DO NOT ALLOW references to yield
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 60 (\%) award 3 marks 47.9 OR 79.9 \checkmark $(47.9 \div 79.9) \times 100=59.99 \ldots .$. $=60$ (\%) (2 sf) \checkmark	3	2×2.2 1.2	Allow ECF for incorrect RFMs Allow sf mark on incorrect calculation
		(iii)	Method 2 AND any one from: since method 1 has more reactants / \checkmark method 1 has Mg on LHS / method 2 has only one reactant / \checkmark denominator in fraction is bigger for method $1 / \checkmark$ larger mass or percentage of waste products $/ \checkmark$ fewer wasted atoms \checkmark	1	2.2	ALLOW atom economy of method 1 is 37%

| | (iv)(Either Jamal or Mia are correct)
 Any three from:
 Higher AE wastes fewer atoms / less chemicals / less
 waste \checkmark
 yield may be low / reaction may reach equilibrium \checkmark
 rate may be low \checkmark
 some by-products may be toxic/harmful / by-products
 may not harm the environment \checkmark
 may requires high energy input / use fossil fuels /
 produces greenhouse gases / other named pollutant \checkmark
 by-products may be useful / oxygen is a useful by product
 AW | $\mathbf{3}$ | $\mathbf{3 . 1 b}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (d) | | IGNORE 'pollution' or 'pollutants' alone | | |

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

