Oxford Cambridge and RSA

GCSE (9-1)

Chemisty B (Twenty First Century Science)

J258/03: Breadth in chemistry (Higher Tier)
General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
S	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Chemistry B:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures.
AO3.1	Analyse information and ideas to interpret and evaluate.
AO3.1a	Analyse information and ideas to interpret.
AO3.1b	Analyse information and ideas to evaluate.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3b	Analyse information and ideas to develop experimental procedures.

Question			Answer	Marks	AO element	Guidance
1	(a)	(i)	strong (covalent) bonds / bonds need a lot of energy to break / each atom bonded to 4 others / lots of bonds/ giant covalent structure \checkmark	1	1.1	DO NOT ALLOW - incorrect type of bonding DO NOT ALLOW 'strong intermolecular forces / strong intermolecular bonds'
		(ii)	One mark for each property linked to its correct explanation: PROPERTY - Slippery / soft / lubricating / marks paper / flakes easily - (Electrical / thermal) conductivity - Strength (along layer) EXPLANATION - layers (with weak bonds between) - delocalised/free electrons / sea of electrons / electrons can move - strong bonds (within layers)	2	2×2.1	ALLOW one mark for two independent properties OR two independent explanations OR one property and one explanation IGNORE 'intermolecular' IGNORE melting point, boiling point
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=3.4$ (g) award 2 marks $\begin{aligned} & \text { mass }=1 / 0.29 \text { OR } 3.448 / 3.45 / 3.5 \text { etc } \checkmark \\ & \text { mass }=3.4(\mathrm{~g})^{\checkmark} \end{aligned}$	2	2×2.2	Answer must be to two sig figs
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.0037(\mathrm{~g})$ award 2 marks $\begin{aligned} & 44 / 12 \checkmark \\ & \text { Mass }=0.0037(\mathrm{~g}) / 3.7 \times 10^{-3}(\mathrm{~g}) \checkmark \end{aligned}$	2	2×2.2	Answer must be to two sig figs

| (ii) | Idea that volume or density of diamond and graphite are
 different / volume or density are irrelevant \checkmark
 Both contain the same amount $(12 \mathrm{~g})$ of carbon $/ \mathrm{graphite}$
 is pure carbon and thus makes $44 \mathrm{~g} /$ same mass of CO_{2}
 produced as same mass of C in each / same number of
 carbon atoms present in each \checkmark | $\mathbf{2}$ | $\mathbf{2 \times 3 . 2 \mathrm { a }}$ | ALLOW distance between atoms is irrelevant |
| :--- | :--- | :--- | :--- | :--- | :--- |

Question			Answer	Marks	AO element	Guidance
3	(a)	(i)	Fully correct dot and cross for butane with 8 electrons around all four carbons and 2 around all ten hydrogens \checkmark	1	1.2	e.g. ALLOW all dots/all crosses
	(a)	(ii)	ball and stick: shows spatial arrangement / shape / bond angles / is 3D / (relative) sizes of atoms dot and cross shows (shared) electrons / shows how bonds form / shows type of bond / shows bonds are covalent	2	1.2×2	IGNORE ‘Shows the bonds / structure’ ALLOW shows electrons transferred/shows if compound is ionic ALLOW 'shows if bonds are single or double' in either answer, but not in both
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 83 (\%) award 3 marks RFM of butane $=58 / C_{4}=48 \checkmark$ $\%$ of $C=48 / 58 \times 100 \checkmark$ $=83$ (\%) 2 sf \checkmark	3	2.2×2 1.2	ALLOW mark point three for incorrect answer to two sig figs with working shown.

(c)	Any two from: MP1-Butane has bigger/heavier molecules/more carbons/longer chain MP2 - Butane has stronger/more intermolecular forces/forces between molecules \checkmark MP3 -more energy required to separate/break/overcome forces between butane molecules \checkmark	$\mathbf{2}$	$\mathbf{2 \times 2 . 1}$	ALLOW ORA throughout

Question		Answer	Marks	AO element	Guidance
4	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{6 2}$ (\%) award 2 marks Decrease $=343-132=211 \checkmark$ $\%$ decrease $=211 / 343 \times 100=62(\%) 2$ sf \checkmark	2	2×2.2	Answer must be to two sig figs ALLOW one mark for 54% to two sig figs - this is for calculation of decrease in Use data.
	(b)	(energy for) disposal of product collection/sorting/landfill/reuse/recycle/incinerate \checkmark	2	$\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$	ALLOW thrown away/grave

Question		Answer	Marks	AO element	Guidance	
$\mathbf{5}$	(a)	atomic mass fitted \checkmark reactions fitted / properties fitted / is similar to AI \checkmark	$\mathbf{2}$	$\mathbf{2 \times 1 . 1}$	ALLOW it has the same number (three) electrons in its outer shell/atomic number fitted IGNORE more/less reactive or higher/lower named physical property IGNORE the same properties	
	(b)	atomic numbers were measured \checkmark	(c) Ga ${ }^{3+}$ with eight or zero electrons depending on number of shells shown \checkmark O$^{2-}$ with eight electrons \checkmark Charges on ions 3+ and 2- \checkmark	$\mathbf{3}$	$\mathbf{3 \times 1 . 2}$	DO NOT ALLOW shared electrons/covalent structure

	uest	Answer	Marks	AO element	Guidance
6	(a)	Advantage: less produce CO_{2} / less produce greenhouse gases / less named pollutant / less CO / less NOx / less C particulates / less SO_{2} / less unburnt hydrocarbons / only produces water \checkmark Disadvantage: Any one from: - there are fewer places to refuel cars \checkmark - fuel cells not as durable - cost of cars/cost of fuel more expensive - difficult to store hydrogen/gas / takes up large volume - tank of hydrogen does not last as long as petrol / does not produce as much power / does not give out as much energy - safety concerns about use of hydrogen / it is (more) flammable / explosive \checkmark	2	2×1.2	ALLOW 'does not produce $\mathrm{CO}_{2} /$ greenhouse gases etc. IGNORE references to pollution / harmful gases ALLOW reasonable points relating to convenience of use ALLOW reasonable points relating to energy efficiency ALLOW fossil fuels still used to produce (electricity which produces) hydrogen IGNORE 'costs more' alone

Question		Answer	Marks	AO element	Guidance
7	(a)	Any one from: - positive charge spread over atom / sea of positive charge \checkmark - electrons spread out / electrons do not move - no 'empty space’ \checkmark	1	1.1	IGNORE references to neutrons ALLOW protons for positive charges ALLOW 'electrons delocalised’ IGNORE statements give in Q turned into negatives e.g. 'there is no positive nucleus' DO NOT ALLOW any reference the Thomson atom having a nucleus
	(b)	Very few positive particles 'bounced back' \checkmark	1	2.1	
	(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $4 \times 1 \mathbf{1 0}^{-7}(\mathrm{~m})$ award 2 marks conversion cm to $\mathrm{m}(2 \mathrm{~cm}=0.02 \mathrm{~m})$ diameter $=0.02 / 50000=4 \times 10^{-7}(\mathrm{~m})$	2	1.2 2.2	Answer must be in standard form for second mark. ALLOW one mark for $4 \mathrm{x} 10^{\mathrm{x}}$ if x is not -7 / incorrect place value but ends in 4 ALLOW one mark for 0.0000004

Question			Answer	Marks	AO element	Guidance
8	(a)		powder AND surface area is greater / more collisions per second	1	3.2b	
	(b)		fizzing / reaction faster \checkmark copper sulfate / blue colour unchanged at the end \checkmark	2	2×2.1	ALLOW 'more bubbles' but not 'more gas produced' IGNORE references to mass change ALLOW copper sulfate unchanged / not used up
	(c)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $2.4\left(\mathrm{dm}^{3}\right)$ award 2 marks $\mathrm{n}=6.5 / 65.4=0.1 / 0.099 \mathrm{~mol} \mathrm{Zn} \checkmark$ vol $\mathrm{H}_{2}=0.099 \times 24 \mathrm{dm}^{3}=2.4 \mathrm{dm}^{3} 2 \mathrm{sf} \checkmark$	2	2×2.2	Answer must be to two sig figs ALLOW mark point two for incorrect mol $\mathrm{Zn} \times 24$ correctly calculated to two sig figs ALLOW one mark for 160 (6.5×24 to two sig figs)
		(ii)	same catalysts do not affect yield / only affect rate	2	2×1.2	

Question			Answer	Marks	AO element	Guidance
9	(a)		acidic bleaching action	2	2×1.2	
	(b)	(i)	$\begin{aligned} & \text { kills } \checkmark \\ & \text { micro-organisms (that cause disease) } \checkmark \end{aligned}$	2	2×1.2	ALLOW bacteria/pathogens/microbes ALLOW one mark for 'sterilises water'
		(ii)	chlorine is poisonous / toxic / reacts with organic matter to produce harmful compounds	1	1.2	IGNORE 'harmful' alone
	(c)	(i)	Brown / yellow / orange (colour) \checkmark	1	2.2	IGNORE 'red' alone
		(ii)	$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2}$ Correct formulae Balanced	2	2×1.2	IGNORE additional formulae for first mark only ALLOW one mark for fully correct symbol equation $\mathrm{Cl}_{2}+2 \mathrm{NaBr} \rightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$ IGNORE state symbols

Question		Answer	Marks	AO element	Guidance
10	(a)	there is a mixture of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} The reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is going in both directions.	2	2×1.2	
	(b)	hydrogen is made from natural gas and steam ammonia is separated and the nitrogen and hydrogen are recycled	2	2×1.2	
	(c)	Advantage: low temperature increases the yield / moves equilibrium to the right / favours forward reaction ORA \checkmark however it is produced very slowly / less is produced per day / reactions are slower at lower temperatures ORA \checkmark 450 is a compromise between rate and yield / compromise conditions are used	3	3×3.2a	IGNORE 'more ammonia' for 'more yield' DO NOT ALLOW 'more ammonia is produced per day'
	(d)	FOR: enters watercourses / eutrophication / increased plant or algal growth AGAINST: there are not enough natural fertilisers / ammonium compounds can be manufactured (in large quantities) / need to grow more food/crops \checkmark	2	2×3.1b	ALLOW nitrates in drinking water are harmful IGNORE makes plants grow faster

Question			Answer	Marks	AO element	Guidance
11	(a)	(i)	A and it is most reactive / fast(est) reaction \checkmark	1	2.1	
		(ii)	$A \rightarrow A^{2+}+2 e \checkmark$	1	1.2	ALLOW A - $2 \mathrm{e} \rightarrow \mathrm{A}^{2+}$
		(iii)	A is oxidised as it loses electrons \checkmark	1	2.1	
	(b)		$\mathrm{C}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})$ Equation State symbols	2	2×1.2	ALLOW ionic equation: $\mathrm{C}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{C}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})$ ALLOW (s) on metal formula $+(\mathrm{aq})$ on compounds formulae for state symbol mark even if equation wrong.
	(c)		delocalised electrons electrons can move	2	2×1.1	ALLOW free/sea of electrons as AW for 'delocalised' IGNORE 'carry charge' unless movement is clearly implied

Question			Answer	Marks	AO element	Guidance
12	(a)	(i)	 Single, continuous line of best fit that ignores point at 20s \checkmark	1	2.2	Line should be within 1 square of every point except point at 20s IGNORE the curve after 60s
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer is between $0.18 \mathbf{- 0 . 2 2 (g / s)}$ award 2 marks Draw tangent on graph / reads value of mass and time \checkmark Gradient (e.g. $10 /$ (value between 45 and 55) $=$ Gradient in the range 0.22 to $0.18(\mathrm{~g} / \mathrm{s})$	2	$\begin{aligned} & 2.2 \\ & 1.2 \end{aligned}$	Commonly seen values are $300(-290)$ and ~ 50 / 10 and 2;
		(iii)	gets slower / decreases with time / gradient decreases \checkmark	1	3.1a	
		(iv)	Best fit line extended (to 100) or gives readings between 290.4 and 291.6 $\text { Mass loss }=(300-291)=9$	2	$\begin{gathered} 3.2 \mathrm{a} \\ 1.2 \end{gathered}$	ALLOW 'curve/best fit line extended' appropriately drawn on graph or stated ALLOW 8.4 to 9.6

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

